
Q. 1 - Q. 10 carry one mark each & Q.11 - Q.20 carry two marks each.

- Q.1 To which one of the following classes of enzymes does chymotrypsin belong?(A) Oxidoreductase (B) Hydrolase (C) Transferase (D) Isomerase
- Q.2 The substrate saturation profile of an enzyme that follows Michaelis-Menten kinetics is depicted in the figure. What is the order of the reaction in the concentration range between 0.8 to 1.4 M?

- Q.3 Which one of the following conformations of glucose is most stable?(A) Boat(B) Half Chair(C) Chair(D) Planar
- Q.4 Which one of the following profiles represent the phenomenon of cooperativity?

- Q.5 Which one of the following amino acids is responsible for the intrinsic fluorescence of proteins?
 - (A) Pro (B) Met (C) His (D) Trp
- Q.6 The glycosylation of the proteins occurs in____.(A) glyoxysomes (B) lysosomes
 - (C) Golgi apparatus (D) plasma membrane

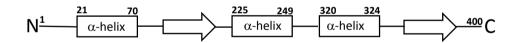
- Q.7 Which one of the following properties of the myeloma cells is used in the hybridoma technology to generate monoclonal antibody?
 - (A) lack of thymidylate synthase
 - (B) over-expression of hypoxanthine-guanine phosphoribosyl transferase
 - (C) over-expression of inosine 5'-monophosphate cyclohydrolase
 - (D) lack of hypoxanthine-guanine phosphoribosyl transferase
- Q.8 The movement of protons through the F_0F_1 -ATPase during mitochondrial respiration is required for _____
 - (A) the increase in pH of mitochondrial matrix.
 - (B) changing the conformation of F_0F_1 -ATPase to expel the ATP.
 - (C) importing P_i from inter membrane space.
 - (D) decreasing the affinity of ADP to F_0F_1 -ATPase.
- Q.9 The number of NADP⁺ molecules required to completely oxidize one molecule of glucose to CO_2 through pentose phosphate pathway is _____ (correct to integer number).
- Q.10 Measurement of the absorbance of a solution containing NADH in a path length of 1cm cuvette at 340 nm shows the value of 0.31. The molar extinction coefficient of NADH is 6200 M⁻¹ cm⁻¹. The concentration of NADH in the solution is $___ \mu M$ (correct to integer number).

Q. 11 – Q. 20 carry two marks each.

Q.11 Among the reagents given below which one of the combination of reagents will **NOT** break the disulphide bonds in the immunoglobulin molecules?

(P) Reduced glutathione(R) Sodium dodecyl sulphate		(Q) Dithiothritol (S) Methionine	
(A) R&S	(B) P&R	(C) P&S	(D) Q&R

Q.12 Match the protein elution condition given in **Group I** with the appropriate chromatography matrices from **Group II**.


	Group I		Group II
Р	Increasing concentration of sodium chloride	i	Phenyl-Sepharose
Q	Increasing concentration of histidine	ii	Chromatofocusing
R	Decreasing concentration of ammonium sulphate	iii	DEAE-Sephacryl
S	Decreasing concentration of H ⁺	iv	Ni-NTA

(A) P-iii; Q-iv; R-i; S-ii	
(C) P-i; Q-ii; R-iii; S-iv	

(B) P-ii; Q-iv; R-i; S-iii (D) P- iv; Q-ii; R-iii; S-i

Q.13	Which one of the following is NOT a neurotransmitter?					
	(A) Adrenaline	(B) Glutamate	(C) Histamine	(D) Histidine		
Q.14	The type-II hypersensitivity reaction is mainly mediated by					
	(A) IgE	(B) IgM	(C) IgA	(D) T cells		
Q.15	5 Which one the following reaction mechanisms drives the conversion of 1 phosphoglyceraldehyde to high energy 1,3-bisphosphoglycerate?					

- (A) Oxidation without anhydride bond formation
- (B) Oxidation coupled with anhydride bond formation
- (C) Substrate level phosphorylation
- (D) Formation of carboxylate
- Q.16 A polymerase reaction is carried out for 10 cycles in a volume of 1 ml with 5 molecules of template DNA. Assuming that the efficiency of the reaction is 100 %, the number of molecules of DNA present in 100 µl at the end of the reaction is ____ (correct to integer number).
- Q.17 The secondary structure topology diagram of 400 amino acid long "Protein-X" is depicted in the figure. The start and end amino acid residue numbers of each α -helix are marked. The percentage (correct to integer number) of residues forming α -helix is____.

- Q.18 An enzyme follows Michaelis-Menten kinetics with substrate S. The fraction of the maximum velocity (V_{max}) will be observed with the substrate concentration [S] = $4K_m$ is _____ (correct to one decimal place). (K_m is Michaelis-Menten constant)
- Q.19 The mass spectrum of benzoic acid will generate the fragment as a base peak (100% relative abundance) of m/z (mass to charge ratio) at _____ (correct to integer number).

Q.20 The standard free energy (ΔG^{\uparrow}) values of reactions catalyzed by citrate lyase and citrate synthetase are -670 and -8192 cal/mol, respectively.

Citrate $\xrightarrow{\text{Citrate lyase}}$ Acetate + Oxaloacetate ΔG_1 = -670 cal/mole

Acetyl-CoA + Oxaloacetate + H₂O $\xleftarrow{\text{Citrate synthetase}}$ Citrate + CoA ΔG_2 = -8192 cal/mole

The standard free energy (in cal/mol) of acetyl-CoA hydrolysis is ____ (correct to integer number).

END OF THE QUESTION PAPER