QUESTION PAPER SERIES CODE

Α

Registration No. :			
Centre of Exam. :			
Name of Candidate :	51		

Signature of Invigilator

COMBINED ENTRANCE EXAMINATION, 2018

M.V.Sc. ANIMAL BIOTECHNOLOGY

[Field of Study Code : MVS]

Time Allowed: 3 hours

Maximum Marks: 240

INSTRUCTIONS FOR CANDIDATES

Candidates must read carefully the following instructions before attempting the Question Paper :

- (i) Write your Name and Registration Number in the space provided for the purpose on the top of this Question Paper and in the Answer Sheet.
- (ii) Please darken the appropriate Circle of Question Paper Series Code on the Answer Sheet.
- (iii) The Question Paper is divided into two Parts : Part-A and Part-B. Both Parts have multiple-choice questions. All answers are to be entered in the Answer Sheet provided with the Question Paper for the purpose.
- (iv) Part-A consists of 60 questions and all are compulsory. Answer all the questions in the Answer Sheet provided for the purpose by darkening the correct choice, i.e., (a) or (b) or (c) or (d) with BALLPOINT PEN only against each question in the corresponding circle. Each correct answer carries 1.5 marks. There will be negative marking and 1/2 mark will be deducted for each wrong answer.
- (v) Part-B consists of 100 questions. Answer any 60 questions in the Answer Sheet by darkening the correct choice, i.e., (a) or (b) or (c) or (d) with BALLPOINT PEN only against the corresponding circle. Each correct answer carries 2.5 marks. There will be negative marking and 1 mark will be deducted for each wrong

In case any candidate answers more than the required 60 questions, the first 60 questions attempted will

- (vi) Answer written by the candidates inside the Question Paper will not be evaluated.
- (vii) Calculators and Log Tables may be used.
- (viii) Pages at the end have been provided for Rough Work.
- (ix) Return the Question Paper and Answer Sheet to the Invigilator at the end of the Entrance Examination. DO NOT FOLD THE ANSWER SHEET.

INSTRUCTIONS FOR MARKING ANSWERS

- 1. Use only Blue/Black Ballpoint Pen (do not use Pencil) to darken the appropriate Circle.
- 2. Please darken the whole Circle.
- 3. Darken ONLY ONE CIRCLE for each question as shown in example below :

Wrong	Wrong	Wrong	Wrong	Correct
● ⓑ ⓒ ●	8 000	8 0 0 0	● ⊕ © ●	@ @ @ ●

- 4. Once marked, no change in the answer is allowed.
- 5. Please do not make any stray marks on the Answer Sheet.
- 6. Please do not do any rough work on the Answer Sheet,
- Mark your answer only in the appropriate space against the number corresponding to the question.
- 8. Ensure that you have darkened the appropriate Circle of Question Paper Series Code on the Answer Sheet.

PART-A

Answer all questions

1.	Which one of the following is the methyl ester artificial sweetener of diper from aspartic acid and phenylalanine?	otide formed
	(a) Alitame	E
	(b) Sucrose	
	(c) Aspartame	

2. Ranitidine is a drug used to treat

(a) fever

(d)

- (b) headache
- (c) muscular pain

Saccharin

(d) hyperacidity

3. Rayon (cellulose acetate) is an example of

- (a) natural polymer
- (b) semi-synthetic polymer
- (c) synthetic polymer
- (d) biological polymer

4. Cellobiose is a disaccharide made up of

- (a) glucose and fructose
- (b) glucose and glucose
- (c) glucose and sucrose
- (d) glucose and mannose

5. Millikan's oil drop method helps to determine

- (a) change on the proton
- (b) change on the electron
- (c) change to the neutron
- (d) entire change in the atom

6.	The	functional group in di	azonium salt	is			
	(a)	$-NO_2$					
	(b)	$-NH_2$					
	(c)	-N ₂ *X					
	(d)	-NH ₄ ⁺ X ⁻			**		
7.	Whi	ch of the following is	a phenol?				
- 10	(a)	Picric acid					
	(b)	Acetic acid					
	(c)	Benzoic acid					
	(d)	Hydrochloric acid					
125							
8.	The	temperature of liquid r nimal is	nitrogen used f	or cryopreserv	ation of seed	ls/freezing of ser	nen
	(a)	–190 °C					
	(b)	−196 °C					
	(c)	-90 °C					
	(d)	−120 °C					
	(4)						
9.	Rai	nwater has a pH of					
	(a)	7					
	(b)	6.8					
	(c)	8.5					
	(d)	5.6					
10.	Wh	ich of the following is	a linear comp	pound?			
	(a)	H ₂ O					
	(b)	CO ₂					
	(c)	NH ₃					

(d) PBr₃

11.	Wh	ich of the following is a strong base?		
	(a)	Aniline		
	(b)	Benzylamine		44
	(c)	Pyridine		
	(d)	Methylamine		
12.	In t	the IUPAC nomenclature, the highest	priority group	is
	(a)	ketone		
	(b)	alkane		
	(c)	alkene		
	(d)	halogen	104	
13.	Wh	ich of the following groups can be bo	oth oxidized or	reduced?
	(a)	Alcohol		
	(b)	Acid		
	(c)	Ketone		
	(d)	Amine		
14.	Eth	yl acetate can undergo which of the	following trans	formations?
	(a)	Base hydrolysis	8	30
	(b)	Substitution		
	(c)	Dehydration		
	(d)	Elimination		
15.	Anl	hydrides can be formed by which of t	the following re	actions?
	(a)	Acid chloride and alcohol		
	(b)	Acid and alcohol		
	(c)	Acid and acid chloride		
	(d)	Acid and amine	120	

16.	The	'one gene-one enzyme' hypothesis was proposed by	7		
	(a)	Lederberg and Tatum			
	(b)	Muller and Stadler			
	(c)	Watson and Crick			
	(d)	Beadle and Tatum			
17.	How cell?	many mitotic divisions will take place to produce 5	512 cells from	a single	paren
	(a)	9			
	(b)	256			
	(c)	158			
	(d)	511			
18.		pary is			
	(a)	. seed germination with subterranean cotyledons			
	(b)	seed germination with epiterranean cotyledons			
	(c)	fruit development without pollination			
	(d)	seed germination inside the fruit, the fruit while a	attached to the	plant	
12120					
19.		squito coils/mats contain			
	(a)	paraquat			
	(p)	внс			
	(c)	toxaphene			
	(d)	derivatives of allethrin			
20.	Mot	tch the following :			
20.	Ma	Hormone Source	3		
		(A) Growth hormone 1. Ovary			
		(B) Oestrogen 2. Thyroid			
		(C) Thyroxine 3. Pituitary	to and		
		(D) Adrenaline 4. Suprarenal gland	d		
	(a)	(A)—4, (B)—3, (C)—2, (D)—1			
	(b)	(A)—3, (B)—1, (C)—2, (D)—4			
	(c)	(A)—1, (B)—4, (C)—2, (D)—3			
55 55	(d)	The state of the s			
	(500)	e sprin a bale of W			

21. Ruminants have ___ number of compartments in their stomach.

(a) 1

(b) 2

(c) 3

(d) 4

22. Diseases transmitted from animal to man and vice versa are known as

(a) contagious diseases

(b) zoonotic diseases

(c) infectious diseases

(d) brucellosis

23. Match the following :

Disease

Vector

(A) Malaria

1. Culex sp.

(B) Cholera

Aedes sp.

(C) Dengue

3. Anopheles sp.

(D) Elephantiasis

4. Musca sp.

(a) (A)-4, (B)-3, (C)-1, (D)-2

(b) (A)-3, (B)-1, (C)-2, (D)-4

(c) (A)-1, (B)-4, (C)-3, (D)-2

(d) (A)-3, (B)-4, (C)-2, (D)-1

24. Sleeping sickness is caused by

(a) Trypanosoma evansi

(b) Trypanosoma gambiense

(c) Trypanosoma foetus

(d) Trypanosoma cruzi

25. Normal life span of red blood cell is

(a) 180 days

(b) 120 days

(c) 80 days

(d) 200 days

26.	other or	rophic interaction be ganism?	nents one org	anism and	neither t	enents no	Haims	die
	(a) Co	mmensalism						
	(b) Am	nensalism						
	(c) Par	rasitism						
	(d) Sy	mbiosis			*:			
2.22			that are	not specific	to a par	ticular nat	hogen o	ome
27.	Disease under	resistance mechanis	ms that are	not specific	to a par	uculai pat	ilogon (John
	(a) ad	aptive immunity						
	(b) in	nate immunity						
	(c) pa	ssive immunity						(4)
	(d) ac	tive immunity						
		5 1 52 N 25 25 V		in the Dec	1 Data Bo	ole		
28.		endangered medicina	i plant listed	in the Rec	Data Do	OK.		
	1.05	asil						
	(b) · Ba	ael						
	(c) Pe	eriwinkle						
	(d) Sa	arpagandha						
29.	Mesoph	niles grow in a tempe	erature range	of				
	(a) 25	5 °C to 45 °C			92			
	(b) 15	5 °C to 30 °C						
	(c) 22	2 °C to 45 °C						
	(d) 1	5 °C to 45 °C						
		•						
30.	Nitroge	en fixing microorganis	sm in legume	crop is		-		
	(a) R	Phizobium						
	(b) A	Acetobacter						(2)
	(c) A	Azospirillum						
	(d) F	rankia						

- 31. The quadratic equation whose roots are 3 and -5 is given by
 - (a) $x^2 2x 15 = 0$
 - (b) $x^2 5x + 15 = 0$
 - (c) $x^2 + 2x 15 = 0$
 - (d) $x^2 + 3x 15 = 0$
- 32. Find the 5th term of the AP series with a first term 11 and c.d. 7.
 - (a) 368
 - (b) 361
 - (c) 568
 - (d) 561
- 33. The product of two consecutive numbers is given by 3782. The numbers are
 - (a) 63, 64
 - (b) 57, 58
 - (c) 61, 62
 - (d) 71, 72
- 34. If two workers can do a definite work in 4 days and 6 days separately, how long it will take to finish that work when they work together?
 - (a) 10 days
 - (b) 2.8 days
 - (c) 2.4 days
 - (d) 2 days
- 35. A function f(x) is defined by the equation $\sqrt{(x+2)}$. Then which of the following statements is correct?
 - (a) The domain of f(x) is all the real numbers.
 - (b) The domain of x is all the real numbers.
 - (c) The domain of f(x) is $-2 \le x < \infty$.
 - (d) The domain of x is $-2 \le x < \infty$.

- 36. The equation of the straight line is given by 6x + 2y = 18. The x and y intercept is given by
 - (a) (3, 0), (0, 4)
 - (b) (4, 0), (0, 4)
 - (c) (3, 0), (0, 9)
 - (d) (4, 0), (0, 9)
- 37. The equation of the circle whose centre lies on the point (-3, 4) and passes through the origin is given by
 - (a) $(x+3)^2 + (y-4)^2 = 5^2$
 - (b) $(x-3)^2 + (y+4)^2 = 5^2$
 - (c) $(x+3)^2 + (y-4)^2 = 7^2$
 - (d) $(x-3)^2 + (y+4)^2 = 7^2$
- 38. The equation of a line which is perpendicular to the line 3x 4y + 12 = 0 and passing through the origin is given by
 - (a) 3y+4x+12=0
 - (b) 3x + 4y + 12 = 0
 - (c) 3x + 4y = 0
 - (d) 3y + 4x = 0
- 39. sin 3θ can be written in its expanded form as
 - (a) $3\sin\theta 4\sin^3\theta$
 - (b) $-3\sin\theta + 4\sin\theta$
 - (c) $-4\sin\theta + 3\sin^3\theta$
 - (d) $-3\sin\theta + 4\sin^3\theta$
- 40. The two binary numbers (100 and 111) were added. The sum in the decimal number system is
 - (a) 100
 - (b) 10
 - (c) 11
 - (d) 101

- 41. The age difference between the two children of a man is 5 years. The product of their ages after two years will be 50. Find the ages of the children now.
 - (a) 8, 13
 - (b) 2, 7
 - (c) 3, 8
 - (d) 5, 10
- 42. A function is defined by $x^2 6x$. Find out whether the function has maxima or minima, and also calculate the value of maximum or minimum.
 - (a) Maxima, 2
 - (b) Minima, -2
 - (c) Maxima, -9
 - (d) Minima, -9
- 43. The two roots of a quadratic equation $(ax^2 + bx + c = 0)$ is given by 2 + i and 2 i, then which of the following statements is correct?
 - (a) All the coefficients a, b and c contain imaginary numbers.
 - (b) None of the coefficients contains any imaginary terms.
 - (c) Coefficients a and b are real and c is imaginary.
 - (d) Coefficient a is real and b and c are imaginary.
- **44.** If $0 \le \theta \le 90^{\circ}$, then the value of θ in $\cos^2 \theta \sin^2 \theta = 1$ is
 - (a) 45°
 - (b) 30°
 - (c) 90°
 - (d) 0
- **45.** $\int_{2}^{3} (4x^{3} + 3) dx =$
 - (a) 81
 - (b) 77
 - (c) 78
 - (d) 68

	***	ich of the lonowing quantities	is dimensionless	2	
	(a)	Work			
	(b)	Area			
	(c)	Angle			
	(d)	Force			
47.	The	most suitable instrument for	measuring the s	ize of an ato	om is
	(a)	vernier caliper			
	(b)	screw gauge			
	(c)	electron microscope			
	(d)	optical microscope			
48.	The	component of contact force no	ormal to the sur	faces in con	tact is called
	(a)	gravitational component			
	(b)	friction			
	(c)	tension			
	(d)	normal reaction			
49.	Whi	ch physical quantity is conserv	red during both	elastic and	inelastic collision?
	(a)	Linear momentum			
	(b)	Velocity			
	-(c)	Potential energy			
	(d)	Kinetic energy			
50.	Who	discovered radioactivity?			
	(a)	Rutherford			
	(b)	Marie Curie			
	(c)	Roentgen			
	(d)	Becquerel			

- 51. The heat transferred from a system to its surroundings (or vice versa) when a chemical reaction is run under conditions of constant pressure is equal to
 - (a) the change in the enthalpy of the system
 - (b) the change in the energy of the system
 - (c) the change in the free energy of the system
 - (d) the change in the entropy of the system
- 52. Three different capacitors are connected in series, then
 - (a) they will have equal charge
 - (b) they will have equal potential
 - (c) they will have less charge
 - (d) they will have more potential
- 53. A boy throws a ball vertically upwards with an initial speed of 50 m/s. How long the ball takes to reach the maximum height and what is its maximum height?
 [g (approx.) = 10 m/s²]
 - (a) 1.2 s, 14.4 m
 - (b) 1.2 s, 7.2 m
 - (c) 0.6 s, 14.4 m
 - (d) 0.6 s, 7.2 m
- 54. A person pushes a 20 kg box horizontally with a force of 120 N for a distance of 6 m on a straight-line path. How much work is done on the box by the person?
 - (a) 120 J
 - (b) 2400 J
 - (c) 720 J
 - (d) 20 J
- 55. A boy weighing 30 kg is wearing a roller skating shoe and rolls down a slanted path having a vertical height of 2.5 m. The length of the slanted path is 10 m. If we consider the friction as negligible, find the speed of the boy at the bottom of the slant. [g (approx.) = 10 m/s²]
 - (a) 7·1 m/s
 - (b) 9·2 m/s
 - (c) 7.3 m/s
 - (d) 6.5 m/s

56.	If $\vec{A} = 2i + 3j$ and	$\vec{B} = -i - 4j$, find	the value of $\vec{A} + \vec{B}$.
-----	----------------------------	----------------------------	------------------------------------

- (a) i+j
- (b) i-j
- (c) 2i 12j
- (d) 2i + 12j

57. Two cars of equal mass are travelling with a speed of 120 km/h and 60 km/h, respectively. Find the ratio of the kinetic energy of the two cars.

- (a) 1
- (b) 2
- (c) 4
- (d) ½

58. When body is earthed, electrons flow from the earth into the body. This means the body is

- (a) charged negatively
- (b) charged positively
- (c) uncharged
- (d) an insulator

59. An astronomical telescope has a large aperture to

- (a) have high resolution
- (b) reduce spherical aberration
- (c) have low dispersion
- (d) increase span of observation

60. Internal energy of an ideal gas does not change in

- (i) an isothermal process
- (ii) an adiabatic process
- (iii) a reversible process
- (iv) a cyclic process

Choose the correct option.

- (a) (i) and (ii)
- (b) (i) and (iii)
- (c) (ii) and (iii)
- (d) (ii) and (iv)

PART-B

Answer any sixty questions

		DNA2
61.	Whic	h of the following cell organelles is having its own DNA?
	(a)	Ribosome
	(b)	Endoplasmic reticulum
	(c)	Mitochondria
	(d)	Peroxisome
62.	In th	ne phenomenon of fluorescence, the wavelength of incident light is
	(a)	less than the emitted light
	(b)	more than the emitted light
	(c)	equal to the emitted light
	(d)	No relation with the emitted light
63.	The	fluidity of plasma membrane increases with
	(a)	increase in saturated fatty acids in the membrane
	(b)	increase in unsaturated fatty acids in the membrane
	(c)	increase in phospholipid content in the membrane
	(d)	increase in glycolipid content in the membrane
64.	Whi	ich of the following is the deposit of reserve materials in the cytoplasm of bacteria?
	(a)	Inclusion body
	(b)	Endospore
	(c)	Cytoskeleton
	(d)	Ribosome
65.	The	e cell organelles mainly responsible for protein sorting are
	(a)	nucleus and endoplasmic reticulum
	(b)	endoplasmic reticulum and Golgi apparatus

(c)

(d)

ribosome, nucleus, endoplasmic reticulum and Golgi apparatus

nucleus, endoplasmic reticulum and Golgi apparatus

66.		enzyme that recog molecule is called	nizes a spe	cific (palin	dromic) sequ	uence and cuts w	ithin a
	(a)	exonuclease					
	(b)	methylase					
	(c)	modification enzyn	ne				
	(d)	restriction endonu			71		9
	1.						
67.	Citri	c acid cycle is inhi	bited by wh	ich of the	following?		
	(a)	Fructo-acetate				7 4	
	(b)	Aerobic condition					
	(c)	Malic acid					
	(d)	Fluorouracil			9		
	484					at plant	
68.	Ţhe	combination of an	amino-alcol	nol, a fatty	acid and a	sialic acid forms	
	(a)	phospholipids					
	(b)	sulpholipids					
	(c)	glycolipids					
	(d)	aminolipids					
69.	Ant	igen binding site is				8 1 1 1 1 1 1 1	
	(a)	N-terminal ends	2000				
	(b)	C-terminal ends					
	(c)					uring heavy chain	
	(d)	C-terminal ends	of one heavy	chain and	l its neighbo	uring heavy chain	
70.	The	e pH inside lysoson	ne is				
	(a)	3					
	(b)	5					
	(c)	7	31 81 82				
	(d)	9) ben di-	3-0			
						- 0	1.0
/118	-A			16			G&

71.	In t	he prophase stage of	meiosis, crossing	g-over takes pla	ace during	
	(a)	zygotene				
	(b)	pachytene		60		
	(c)	diplotene				3 N I
	(d)	leptotene				
72.	The (exp	quality of a vaccine t perimental or natural	that confers solid) by the pathogen	protection to the is called	e host against	any challenge
	(a)	potency				
	(b)	efficacy				
	(c)	safety				
	(d)	sterility				
73.	The	specialized cells of asport the undegrade	the mucosal ep d antigens from	ithelium coveri gut lumen into	ng the Peyer's the lamina pr	s patches and copria are
	(a)	M cells				
	(b)	N cells				
	(c)	P cells				40.7
	(d)	R cells				
74.	Pro	teins like antibodies, ution at different con	depending on the centrations of an	eir solubility cha nmonium sulph	aracteristics, c	ome out of the
	(a)	salting				
	(b)	salting in				
	(c)	salting out		ie.		
	(d)	de-salting				
75.		karyotic RNA polymer erminal domain of R			nsible for pho	sphorylation of
	(a)	TF-II D				
	(b)	TF-II A				
	(c)	TF-II B	X)			
	(4)	ਜਦ ਸ਼ ਸ਼				ž 9

76.	In de	eoxy-sugar of DNA, oxygen is abs ?	ent in which of the fo	llowing positions	of the sugar	
	(a)	Position 1				
	(b)	Position 2				
	(c) ·	Position 3				
	(d)	Position 5		51 27 T		
77.		ch of the following subunits of noter recognition?	prokaryotic RNA po	olymerase is res	sponsible for	r
	(a)	Alpha				
	(b)	Beta				
	(c)	Sigma				
	(d)	Gamma				
78.	The	wavelength used for measurem	ent of concentration		ution is	
	(a)	230 nm				
	(b)	280 nm				
	(c)	260 nm				
	(d)	240 nm				
79.	Cof	actor for glycolytic enzyme hexo	kinase is			
	(a)	Fe ⁺⁺		× ×		
	(b)	Mn ⁺⁺				
	(c)	Mg ⁺⁺				
	(d)	Cu ⁺⁺				
80.	Wh	ich of the following activities is r A polymerase?	equired for proofread	ing during DNA	replication b	y
	(a)	3'-5' exonuclease activity				
	(b)	5'-3' exonuclease activity			7	
	(c)	3'-5' endonuclease activity				
	(d)	5'-3' endonuclease activity				
/118	R-A		18			

81.	Mitoch	hondrial DNA is replicated	l by			
	(a) I	DNA polymerase α			2	
	(b) I	DNA polymerase β				
	(c) I	DNA polymerase γ				
	(d) I	DNA polymerase δ				
				18		
82.	mixtu	ecessary ingredients for D re, DNA polymerase is from the newly DNA synthesized	Thermus aqui	aticus and the tem	in a test tube plate is from a	. In the human
	(a) T	Thermus aquaticus DNA		27		
	(b) h	uman DNA				
	(c) a	mixture of Thermus aqua	aticus and hun	nan DNA		
	(d) h	uman RNA				
		Alexander and a second a second and a second a second and	e a			
83.	Which of the following statements best defines the 'quaternary structure' of a protein?					
	(a) T	he arrangement of two or omplex.	more polype	ptide subunits int	o a single fur	nctional
	(b) T	he folding of the polypept	ide backbone	in three-dimension	nal space.	
	(c) T	he interaction of amino a	cid side chain	s.		
	(d) T	he sequence of amino acid	ds in a polype	ptide chain.		
84.	Which	of the following vectors of	an maintain t	he largest fragmer	nt of foreign D	NA?
	(a) Y	AC				
	(b) C	osmid				
	(c) P	lasmid				
	(d) P	hage			27	
85.		of the following second asmic reticulum?	messengers s	ignals the release	e of Ca ⁺⁺ fro	om the
	(a) C	yelic AMP				
	(b) C	yclic GMP			55	

(c)

(d)

1,2-diacylglycerol

Inositol triphosphate

86.	Ste	rilization of tissue culture mediu	m is done by			
	(a)	mixing the medium with antifu	ingal agents			
	(b)	filtering the medium through n	nembrane filter	31		
	(c)	autoclaving of medium at 120°	for 15 min			
	(d)	keeping the medium at -20 °C				
87.	The	ability of a microscope to separ	ate or distinguish tv	vo adjacent obj	ects is	
	(a)	magnification power				
	(b)	numerical aperture				
	(c)	resolving power				
	(d)	analytical aperture	E #3			
		9	1.0			
88.	A m	nutation caused by a base substited	tution resulting in th		stop coo	don is
	(a)	point mutation				
	(b)	missense mutation				
	(c)	nonsense mutation				
	(d)	synonymous mutation				
					177	
89.		genetic tendency/predisposition nitis, asthma, etc., is called	n to develop allergio	diseases suc	h as al	llergic
	(a)	affinity				**
	(b)	avidity				
	(c)	anergy				
	(d)	atopy				
90.	KOZ	ZAK element is associated with				
	(a)	transcription				
	(b)	translation			140	
	(c)	replication				
	(d)	RNA splicing				
	_					

	(b)	1,4-beta glycosidic linkage	. x				
	(c)	1,2-beta glycosidic linkage					
	(d)	peptide bond			N 8 = 1,23		
92.	Gh	itathione is a					
	(a)	tripeptide					
	(b)	dipeptide				10	
	(c)	tetrapeptide					
	(d)	large sized protein					
93.	Wh	ich of the following is a polyt	unsaturated fatty a	cid?			
	(a)	Palmitic acid					
	(b)	Oleic acid					
	(c)	Palmitoleic acid					
	(d)	Arachidonic acid					
) - e	S-12	edit .					
94.		smallest monosaccharide ha	ving furanose ring	structure	is		
	(a)	erythrose					
	(b)	glucose				79	
	(c)	fructose			G.		
	(d)	ribose			13		
95.	At p	H below isoelectric point, an	amino acid exists	as		39	
	(a)	cation					
	(b)	zwitterion					
	(c)	anion					
50 9	(d)	undissociated molecule			171		
/118-/	A		21				[P.T.O.

91. Lysozyme can cause hydrolysis of

(a) phosphodiester bond

	(a)	nitrogen 1					
	(b)	nitrogen 3					
	(c)	nitrogen 7					
	(d)	nitrogen 9		54			
97.	The	terminal nucleotide	sequence in tRNA is				
	(a)	CCA at 5 end					
	(b)	ACC at 5 end		71/			
	(c)	CCA at 3 end					
	(d)	ACC at 3 end			367.01		
		19th					
98.	The	only ketogenic amin	o acid is				
	(a)	trypsin					
	(b)	glycine					
	(c)	leucine					
	(d)	valine			400		
		JO					
99.		enzyme responsibly droxyacetone phosph	e for interconversion of nate is	glyceraide	nyae-3-pno		and
	(a)	aldolase					
	(b)	enolase					
	(c)	ketolase					
	(d)	enoyl reductase					
100.		ich of the following mo	olecules contributes two ca	rbons and o	ne nitrogen	atom i	n the
	(a)	Glycine			545		
	(b)	Alanine					
	(c)	Glutamic acid					
	(d)	Tyrosine					
/118	A		22				

101.	The	e ketone body exhaled by animals suff	fering from ketosis is
	(a)	acetoacetate	
	(b)	hydroxybutyrate	
	(c)	acetone	
	(d)	hydroxyl acetate	
102.	Wh	ich of the following animals does not	have gall bladder?
	(a)	Cattle	
	(b)	Horse	
	(c)	Dog	
	(d)	Human	5 g g - 8
			96 ₁₂ C
103.	In 1	ruminants, the main precursor of milk	fat is
	(a)	acetic acid	
	(b)	propionic acid	
	(c)	butyric acid	
	(d)	None of the above	
104	1171-2	ah af tha falla i i i a a a a a a	
104.		ch of the following immunoglobulins i	s present in saliva?
	(a)	IgA	
		IgD	
	(c)	IgE	
	(d)	IgG	
105.	Foot	and mouth disease is caused by	
	(a)	retrovirus	
	(b)	aphthovirus	
	(c)	adenovirus	

106.	Int	estinal button ulcer' is the pa	athognomonic lesion of wh	ich of the	following	diseases?
	(a)	Classical swine fever				
	(b)	Foot and mouth disease				
	(c)	Enterotoxaemia				
Té.	(d)	Paratuberculosis				
107.	Wh	ch of the following antigenic	variants of influenza virus	s is involve	d with s	wine flu?
	(a)	H ₂ N ₅				
	(b)	H_1N_1			1910	
	(c)	H_5N_1				
	(d)	H ₁ N ₅				14
108.	Asc	oli's precipitation test is on	e of the specialized tests	for the di	iagnosis	of
	(a)	anthrax				
	(b)	plague				4.01
	(c)	paratuberculosis		p/4		
	(d)	mastitis				
109.	Whi	ch of the following is not a	a characteristic of a stem	cell?		
	(a)	Self-renewal			×	
	(b)	Differentiation				
	(c)	Embryoid body formation				
	(d)	Malignancy				
		Si				
110.	Wh	ch of the following is respo	onsible for antibody diver	sity?		
	(a)	VDJ recombination				
	(b)	Point mutation				
	(c)	VDJ deletion				
	(d)	SNP in MHC genes	3			
/118-	A		24			

111.	Ligh	ht chain of immunoglobulin is	absent in		
	(a)	dog			
	(b)	goat			
	(c)	camel		10	
	(d)	chicken	it.		
112.		nich of the following antibiotics i BA)?	s a structural analogo	ue of para-amino	obenzoic acid
	(a)	Sulfonamides			
	(b)	Cephalosporin			
	(c)	Tetracycline			
	(d)	Gentamicin			
113.	Wh	ich of the following is an amino	oglycoside antibiotic?		
	(a)	Ciprofloxacin			
	(b)	Neomycin			
	(c)	Erythromycin			
	(d)	Vancomycin			
114.	Buj	parvaquone is the drug of choice	ce for the treatment o	f	
1 50	(a)	theileriasis			
	(b)	babesiosis			
	(c)	anaplasmosis	87		
	(d)	trypanosomiasis	HE		
115.	Aut	tohaemotherapy is practised in	the treatment of		
	(a)	haemorrhagic septicaemia			
	(b)	papillomatosis			
	(c)	blackleg			
	(d)	horn cancer			

116.	Ovulatory fossa is the characteristic feature of the reproductive system of							
	(a)	cattle						
	(b)	sheep						
	(c)	goat						
	(d)	mare						
117.	Let	down of milk' is initiate	ed by the hormone					
	(a)	prolactin						
2.5	(b)	lactogen						
	(c)	oxytocin						
	(d)	lactopoietin		- 20 期				
118.	'Ste	rility hump' is associate	d with					
	(a)	pseudohermaphrodite						
	(b)	cystic ovary						
	(c)	endometritis		200				
	(d)	metritis						
119.	Pers	sistent corpus luteum is	best treated with					
	(a)	prostaglandin $F_{2\alpha}$						
	(b)	progesterone						
	(c)	PMSG	12.					
	(d)	HCG						
120.	Whi	ch of the following helmin	nths is responsible for oeso	phageal fibrosarcoma in dogs?				
	(a)	Toxocara canis						
	(b)	Ancylostoma caninum						
	(c)	Spirocerca lupi						
	(d)	Ascaris suum						
/118-	A		26					
/			20					

121.	На	emorrhagic septicaemia in bovine is caused by				30	
	(a)	Pasteurella multocida type-A					
	(b)	Pasteurella multocida type-B					
	(c)	Pasteurella multocida type-C					
	(d)	Pasteurella multocida type-D					
122.	Occ	currence of a disease in a community clearly in	exces	s of a	acceptai	nce is ca	alled
	(a)	sporadic			470		
	(b)	epidemic					
	(c)	pandemic					
	(d)	endemic					
123.	Tub	perculin test is an example of				851	
	(a)	molecular diagnostic test					
	(b)	serological test					
	(c)	histopathological test					
	(d)	allergic test					
124.	Whi	ich of the following is not a zoonotic disease?					
	(a)	Brucellosis					
	(b)	Haemorrhagic septicaemia					
	(c)	Japanese encephalitis					
	(d)	Swine flu					
125.	Neu	ro-cysticercosis is due to					
	(a)	intermediate stage of tapeworm					
	(b)	adult stage of tapeworm			20		

(c)

intermediate stage of roundworm

adult stage of roundworm

126.	Wh	nich of the following is a local anaesthetic agent?				
	(a)	Lignocaine hydrochloride				
	(b)	Halothane				
	(c)	Diazepam				
	(d)	Chloroform				
127.	Wh	ich of the following cartilages is involved in roaring in ho	rse?			
	(a)	Arytenoid cartilage				
	(b)	Thyroid cartilage				
	(c)	Cricoid cartilage				
	(d)	Cuneiform cartilage				
128.	For whi	correction of patellar subluxation in cattle, surgical into	erventi	on is	require	d in
	(a)	Middle patellar ligament				
	(b)	Lateral patellar ligament				
	(c)	Medial patellar ligament				
	(d)	Superficial patellar ligament				
129.	Wh	ich of the following terms is used for inflammation of lips	12			
	(a)	Lipitis				
	(b)	Cheilitis				
	(c)	Omphalitis				
	(d)	Gonitis				
130.	It is	s possible to reduce the calving interval by				
	(a)	reducing the service period				
	(b)	reducing the lactation length				
33	(c)	reducing the dry period				
	(d)	reducing the gestation period				

131.	Gra	ading up is recommended for the gen	etic improvement of bree	ed/population which	ch is
	(a)				
	(b)	non-descript			
	(c)	inbred			
	(d)	outbred	200 St 20		
132.	The	e traits which show maximum amo	unt of heterosis are ma	inly governed by	
	(a)	additive gene action			
	(b)	recessive		9	
	(c)	epistasis			
	(d)	pseudodominance			
133.	Sib	selection is different from family s	election where		
	(a)	the selected individuals are meas	ured		
	(b)	only males are measured			
	(c)	only females are measured			
	(d)	both males and females are meas	ured		
134.	Mat	ting between two established breed	is known as		
	(a)	crossbreeding			
	(b)	incross breeding			
	(c)	grading up		20	
	(d)	line crossing			
135.	Toxi	ic principle present in Subabul (Let	ıcaena leucocephala) is		
	(a)	mimosine			
	(b)	tannin			
	(c)	phytic acid			
	(d)	oxalate			

ughage					
age					
ylage					
aw				ito)	
milk considered as diabetoge	enic is				
milk		- (4			
milk					
milk					,
milk				(E)	
ng to FSS, the product obtains s milk coagulating agent, und as	ed by draining der the influence	after the coag ce of harmles	gulation of s bacterial	milk w	rith a
hi			ii jer		
ghurt			1		
eese					
neer					
casein is present in combin	ation with calc	cium in the f	orm of		
cium hydrogen caseinate				10	
cium hydroxyapatite					
cium hydrogen succinate					
cium butyrate					
n of milk' does not contain					

	(c)	more than 4µm					
	(d)	3-4 µm					
						,	
142.	Kar	ran Swiss breed of cattle is devel	oped by				
	(a)	Sahiwal × Brown Swiss					
	(b)	Hariana × Brown Swiss					
	(c)	Tharparkar × Brown Swiss					
	(d)	Gir × Brown Swiss				775	
143.	Wh	ich one of the following is not a	true constitue	nt of milk	?		
	(a)	Milk fat					
	(b)	Casein					
	(c)	Lactose					
	(d)	Phospholipid					
144.	In t	toned milk, the fat percentage is	reduced to	Ş			
	(a)	3.0					
	(b)	1.5		a			
	(c)	4.5					
	(d)	0.5				70)	
145.	Whi	ich breed of poultry is known for	r black meat?				
	(a)	Aseel					
	(b)	Kadaknath					
	(c)	Ankaleshwar					
	(d)	Miri		11.			
/118-	A	y W	31		φ.	1	P.T.O.

The maximum size of fat globules in homogenized milk is

more than 2µm

less than 2µm

(a)

(b)

	(b)	actin		
	(c)	collagen		
	(d)	titin		
		9		
147.	Ele	etric stimulation of freshly slaughtered carcas	ss is done	
	(a)	to improve flavor		
	(b)	to improve texture		
	(c)	to improve tenderness		
	(d)	for keeping quality		
148.	Cas	sing prepared from the stomach is known as		
	(a)	middle		
	(b)	bung		
	(c)	сар		
	(d)	maw		
149.	The	chromosome number in pig is		
	(a)	64		
	(b)	78		
	(c)	28		
20	(d)	38		
150.	Whi	ch of the following breeds of sheep is used for	or pelt pro	duction?
	(a)	Karakul		
	(b)	Rambouillet		
	(c)	Lincoln		
	(d)	Merino		
/118-2	A	32		

The most abundant protein in animal body is

146.

(a) myosin

151.	Flo	oor space requirement for a bull under covered area is	25
	(a)		
	(b)	12 m ²	
	(c)	120 m ²	
	(d)	8 m ²	
	(-)	o in	
152.	Goa	at breed famous for the best quality meat and prolificacy is	8.
	(a)	Jamunapari	
	(b)	Black Bengal	
	(c)	Beetal	
	(d)	Marwari	
			- V2
153.	Fee	d recommended in hot climate is	
	(a)	high protein and low fibre	2 -
	(b)	low protein and high fibre	
	(c)	low protein and low fibre	
	(d)	equal protein and fibre	
		E	
154.	The	species in which vertical and transverse diameters of pelvis are	e nearly equal is
	(a)	bovine	
	(b)	equine	
	(c)	caprine	
	(d)	canine	
155.	The	most common cause of dystocia in bitch is	
	(a)	abnormal presentation and position	
	(b)	uterine torsion	
	(c)	incomplete cervical dialation	
	(d)	uterine inertia	

33

[P.T.O.

/118-A

156.	Amn	iotic vesicle can be palpab	ole in cow between				
	(a) -	day 25-30 of gestation					
	(b)	day 45-60 of gestation					
	(c)	day 60-90 of gestation					
	(d)	day 30-45 of gestation		20			
		and san an user u					
157.		is is placed obliquely in					
	(a)	horse				tea	
	(b)	bull				7231	
	(c)	ram					
	(d)	boar				+10)	
158.	Min	nimum percentage of crude	protein (CP) required for p	reparatio	on of co	mplete	feed
		. 10%					
-53	(b)	12%					
	(c)	15%					
	(d)	20%					
159.	Fee	eds containing more than 18	8% crude fibre and less than	60% TDI	N are ca	tegorize	d as
109.	(a)	concentrates				100	
	(b)						
	200						
	(c) (d)					11%	
	(4)						
160.	Pa	rakeratosis is caused due	to the deficiency of				
	(a)	manganese			ž		
	(b) cobalt					
	(c)	zinc					
551	(d) iron					

/11	8-A		34			389	