QUESTION PAPER SERIES CODE B

Registration No. :	L	l			
Centre of Exam. :				···	
Name of Candidate : _			= : .:		

Signature of Invigilator

COMBINED ENTRANCE EXAMINATION, 2017

M.V.Sc. ANIMAL BIOTECHNOLOGY

[Field of Study Code : MVS]

Time Allowed: 3 hours

Maximum Marks: 240

INSTRUCTIONS FOR CANDIDATES

Candidates must read carefully the following instructions before attempting the Question Paper:

- Write your Name and Registration Number in the space provided for the purpose on the top of this Question Paper and in the Answer Sheet.
- (ii) Please darken the appropriate Circle of Question Paper Series Code on the Answer Sheet.
- (iii) The Question Paper is divided into two Parts: Part—A and Part—B. Both Parts have multiple-choice questions. All answers are to be entered in the Answer Sheet provided with the Question Paper for the purpose.
- (iv) Part—A consists of 60 questions and all are compulsory. Answer all the questions in the Answer Sheet provided for the purpose by darkening the correct choice, i.e., (a) or (b) or (c) or (d) with BALLPOINT PEN only against each question in the corresponding circle. Each correct answer carries I mark. There will be negative marking and $\frac{1}{2}$ mark will be deducted for each wrong answer.
- (v) Part—B consists of 100 questions. Answer any 60 questions in the Answer Sheet by darkening the correct choice, i.e., (a) or (b) or (c) or (d) with BALLPOINT PEN only against the corresponding circle. Each correct answer carries 3 marks. There will be negative marking and 1 mark will be deducted for each wrong answer.

In case any candidate answers more than the required 60 questions, the first 60 questions attempted will be evaluated.

- (vi) Answer written by the candidates inside the Question Paper will not be evaluated.
- (vii) Calculators and Log Tables may be used.
- (viii) Pages at the end have been provided for Rough Work.
- (ix) Return the Question Paper and Answer Sheet to the Invigilator at the end of the Entrance Examination. DO NOT FOLD THE ANSWER SHEET.

INSTRUCTIONS FOR MARKING ANSWERS

- 1. Use only Blue/Black Ballpoint Pen (do not use Pencil) to darken the appropriate Circle.
- 2. Please darken the whole Circle.
- 3. Darken ONLY ONE CIRCLE for each question as shown in example below :

Wrong	Wrong	Wrong	Wrong	Correct
0000	\$ 600	Ø 60 @	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	@ @ © O

- 4. Once marked, no change in the answer is allowed.
- 5. Please do not make any stray marks on the Answer Sheet.
- 6. Please do not do any rough work on the Answer Sheet.
- 7. Mark your answer only in the appropriate space against the number corresponding to the question.
- 8. Ensure that you have darkened the appropriate Circle of Question Paper Series Code on the Answer Sheet.

PART-A

Answer all questions

1.	The	mitochondria evolved from
	(a)	aerobic bacteria
	(b)	anaerobic bacteria
	(c)	aerobic fungus
	(d)	anaerobic fungus
2.	The	endoplasmic reticulum is absent in
	(a)	yeast
	(b)	Salmonella typhi
	(c)	Plasmodium species
	(d)	mammalian red blood cells
3.	Whic	th of the following cells is without nucleus?
	(a)	Neutrophils
	(b)	Eosinophils
	(c)	Macrophages
	(d)	Erythrocytes
4.	In D	NA, the adenine forms the base pairing with
	(a)	thiamine
	(b)	uracil
	(c)	cytosine
	(d)	guanine
5.	Apar	t from nucleus, which organelle possesses the DNA in eukaryotes?
	(a)	Lysosome
	(p)	Endoplasmic reticulum
		Dadamas
	(c)	Endosomes

6.	chro	sickle-cell anemia, the mutation in beta-globin gene that is located or mosome 11 causes a glutamic acid to valine change at position 6 of the protein mutation is an example of
	(a)	frameshift mutation
	(p)	missense mutation
	(c)	nonsense mutation
	(d)	chromosomal abnormality
7.	Whi	ch of the following nucleotides acts as an energy currency for all organisms?
	(a)	ATP
	(b)	CTP .
	(c)	UTP
	(d)	TTP
8.	The	compound that is synthesized by liver having surfactant activity is
	(a)	albumin
	(b)	globulin
	(c)	bile
	(d)	ferritin
9.	The	simplest amino acid is
	(a)	proline
	(b)	glycine
	(c)	methionine
	(d)	tryptophan
10.	The	scientific name of Indian cattle is
	(a)	Bos taurus
	(b)	Bos gaurus
	(c)	Bos indicus
	(d)	Bos indianensis

11.	Whi	Which of the following animals is emitter of methane gas?			
	(a)	Horse			
	(b)	Dog			
	(c)	Pig			
	(d)	Cattle			
12.		carboxylhaemoglobin is			
	(a)	carbon monoxide bound to haemoglobin			
	(p)	carbon dioxide bound to haemoglobin			
	(c)	haemoglobin attached to carboxyl group of an amino acid			
	(d)	haemoglobin surrounded by 20 molecules of carbon dioxide			
13.	The	bacterial organisms present in rumen of ruminants belong to			
	(a)	eubacteria			
		archeobacteria			
	(b)				
	(c)	enterobacteriaceae			
	(d)	ruminae			
14.	The	viruses that infect the bacteria are called			
	(a)	phages			
	(b)	retroviruses			
	(c)	endoviruses			
	(d)	Baculoviruses			
15.	Whi	ch of the following bacteria is spore-forming bacteria?			
	(a)	Salmonella typhimurium			
	(b)	E.coli			
	(c)	Bacillus anthracis			
	(d)	Brucella abortus			

16.	The	function $\cos(\sin x)$ is
	(a)	even
	(p)	odd
	(c)	even and odd
	(d)	neither even nor odd
17.		ard is drawn from a pack of 52 cards, then what is the probability that it is a queen ed colour?
	(a)	1/52
	(b)	1/26
	(c)	1/13
	(d)	1/4
-		
18.	The	function $t(x) = x-1 + x-2 $ is differentiable at
	(a)	1 <i>R</i> – {1}
	(p)	1 <i>R</i> – {2}
	(c)	1R - {1, 2}
	(d)	1R
19.	The	probability of 53 Sundays in non-leap year is
	(a)	2/7
	(b)	1/7
	(c)	3/7
	(d)	4/7
20.	The	image of the point (1, 2) with respect to the line $x + y = 4$ is
	(a)	(1, 4)
	(b)	(2, 4)
	(c)	(3, 4)
	(d)	(4, 1)

21. The curve $y = x^2 - 2x + 1$ is	a/an
--	------

- (a) parabola with vertex (1, 0)
- (b) parabola with vertex (0, 1)
- (c) ellipse
- (d) hyperbola

22. The domain of tan-1x is

- (a) (-∞, ∞)
- (b) $(-\pi, \pi/2)$
- (c) $(-\pi/2, \pi/2)$
- (d) $(0, \pi)$
- 23. One Agro Industry produces a certain number of manure bags in a day. It was observed on a particular day that the cost of production of each manure bag (in ♥) was 3 more than twice the number of manure bags produced on that day. If the total cost of production on that day was ₹ 90, find the number of manure bags produced and the cost of each manure bag.
 - (a) 3 and ₹ 30
 - (b) 4 and ₹ 20
 - (c) 6 and 7 15
 - (d) 5 and 7 18

24. Mode is

- (a) middle-most value
- (b) most frequent value
- (c) least frequent value
- (d) average value
- 25. Jadeja scores runs in 10 consecutive innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is
 - (a) 8.6
 - (b) 6·4
 - (c) 10.6
 - (d) 7.6

26.	The	figure formed by the lines $ax \pm by \pm c = 0$ is
	(a)	a rectangle
	(b)	a square
	(c)	a rhombus
	(d)	a triangle
27.	and	students appeared for two examinations. 60 passed the first, 50 passed the second 30 passed both. Find the probability that a student selected at random has passed east one examination.
	(a)	4/5
	(b)	1/4
	(c)	2/3
	(d)	3/4
28.	Whi	ich of the following is not a measure of central tendency?
	(a)	Standard deviation
	(p)	Mode
	(c)	Mean
	(d)	Median
29.	ran	in experiment tubes numbered 1 to 20 are mixed up and then the tube is drawn at dom. What is the probability that the tube drawn bears a number which is a stiple of 3?
	(a)	1/5
	(b)	2/5
	(c)	3/10
	(d)	3/5
30.	If th	ne difference of mode and median of a data is 24, then the difference of median and in is
	(a)	12
	(b)	24
	(c)	8

31.	The	graph between the unbelowed for
01.		graph between the unbalanced force and acceleration is
	(a)	straight line
	(b)	hyperbola
	(c)	parabola
	(d)	irregular line
32.	the	attery of e.m.f. E has an internal resistance r . A variable resistance R is connected to terminals of the battery. A current I is drawn from the battery. V is the terminal PD. alone is gradually reduced to zero, which of the following best describes I and V ?
	(a)	I approaches E/r , V approaches E
	(b)	I approaches infinity, V approaches E
	(c)	I approaches E/r , V approaches zero
	(d)	I approaches zero, V approaches E
33.		en KE _{max} of photoelectrons is zero, then frequency of incident photon relative to shold is
	(a)	less
	(b)	greater
	(c)	smaller
	(d)	equal
34.	A ba	ar magnet is equivalent to
	(a)	solenoid carrying current
	(b)	circular coil carrying current
	(c)	toroid carrying current
	(d)	straight conductor carrying current
35.	How	many numbers of electrons will be present in current of 1 coulomb charge?
	(a)	1000
	(b)	1×10 ⁵
	(c)	6×10 ¹⁸
	(d)	6.02×10^{18}

118	-B	10
	(d)	pressure decreases exponentially with height
	(c)	product and neight
	(b)	different at all points if they are at same height
	(a)	same at all points if they are at same height
40.	Th	e Pascal's law states that pressure in a fluid at rest is
	(d)	
	(c)	
	(b)	
	(a)	
39.	Th	e substances that become highly magnetic when placed in a magnetic field are called
	(d)	develop high charge
	(c)	remain static in the magnetic field
	(b)	move from weaker to stronger magnetic field
	(a)	move from stronger to weaker magnetic field
38.	The	substances that are diamagnetic have a tendency to
	(4)	Wildians was at the manifest page 400
	(c) (d)	magnetic field of two weakest sources
	(b) (c)	magnetic field of two strongest sources
	(a)	magnetic field of all individual sources
37.		magnetic field of different sources is the vector addition of
	(d)	cube of the distance between them
	(c)	square root of the distance between them
	(b)	square of distance between them

The force between two point charges varies inversely with respect to

36.

(a) distance between them

41.	The	coefficient	of	viscosity	for	a	fluid	is
-----	-----	-------------	----	-----------	-----	---	-------	----

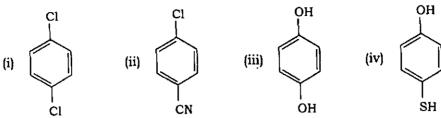
- (a) shearing stress/strain rate
- (b) strain rate/shearing stress
- (c) (strain rate)²/shearing stress
- (d) (10 × strain rate)/shearing stress

42. Which of the following particles would be having highest surface energy?

- (a) Nanoparticles
- (b) Microparticles
- (c) Macroparticles with size 1 to 10 µm
- (d) Macroparticles with size 10 to 100 μm

43. The detergents added to oil in water interphase

- (a) increase the surface tension
- (b) decrease the surface tension
- (c) decrease the wetting surface
- (d) make the surface tension zero


44. According to Boyle's law, at constant temperature of a gas

- (a) the product of pressure and volume is always unity
- (b) the product of absolute pressure and volume is constant
- (c) the product of pressure and volume is proportional to molecular weight of gas molecules
- (d) the product of charge and distance between them is constant

45. If a substance is in the form of a long rod, then for small change in temperature ΔT

- (a) is directly proportional to fractional change in length
- (b) is inversely proportional to fractional change in length
- (c) is directly proportional to original length
- (d) is inversely proportional to original length

46. For which of the following molecules significant $\mu \neq 0$?

- (a) Only (i)
- (b) (i) and (ii)
- (c) (iii) and (iv)
- (d) Only (iii)

47. The water is polar, because of

- (a) having completely negative oxygen atom
- (b) having completely positive hydrogen atom
- (c) having partially negative oxygen and partially positive hydrogen
- (d) having completely uncharged hydrogen and oxygen atoms

48. Which of the following chemical groups is non-polar in nature?

- (a) CH₃ groups
- (b) OH groups
- (c) Amino groups
- (d) COOH groups

49. According to second law of thermodynamics, in all natural processes

- (a) entropy increases
- (b) entropy decreases
- (c) entropy remains unchanged
- (d) entropy becomes zero

50. The passive movement of molecules from higher to lower concentration across the semipermeable membrane is pursuance of

- (a) first law of thermodynamics
- (b) second law of thermodynamics
- (c) third law of thermodynamics
- (d) None of the above

51.	1. In ideal solutions, the enthalpy of mixing of the pure components to form the solu			
	(a)	negative		
	(b)	positive		
	(c)	zero		
	(d)	Value depends on the temperature		
52.	The as	solutions that obey Raoult's law over the entire range of concentration are known		
	(a)	non-ideal solutions		
	(b)	ideal solutions		
	(c)	suspension		
	(d)	colloids		
	<i>m</i> 1			
53.		lowering of vapour pressure of a solvent depends only on the		
	(a)	concentration of solute particles		
	(p)	identity of solutes		
	(c)	identity of solvent		
	(d)	identity of mixing vessel		
54.		electrical resistance of any object is directly proportional to its length and inversely portional to		
	(a)	atmospheric pressure		
	(p)	cross-sectional area		
	(c)	voltage		
	(d)	atmospheric temperature		
55.	The	conductance of an electrolytic solution is equal to the		
	(a)	reciprocal of resistance		
	(b)	reciprocal of cross-sectional area		
	(c)	reciprocal of temperature		
	(d)	reciprocal of concentration of electrolyte		

56.		rate of reaction of reactants A and B is given as rate = $k[A]^{1/2}[B]^{3/2}$. The order of reaction will be		
	(a)	1		
	(b)	2		
	(c)	3		
	(d)	4		
57 .	Whe	en the hydrogen ion concentration is increased 100 times, the pH will be changed by		
	(a)	100 units		
	(b)	10 units		
	(c)	5 units		
	(d)	2 units		
58.		variation in the amount of gas absorbed by the adsorbent with pressure at constant sperature can be expressed by means of curve termed as		
	(a)	adsorption homeotherm		
	(p)	absorption isotherm		
	(c)	absorption polytherm		
	(d)	Freundlich isotherm		
59.	The	Tyndall effect is observed in		
	(a)	colloids		
	(b)	few solutions		
	(c)	suspension		
	(d)	all solutions		
60.	The	dispersion of finely divided oil droplets in water is called		
	(a)	oil in water emulsion		
	(b)	water in oil emulsion		
	(c)	oil in water solution		
	(d)	water in oil solution		

PART-B

Answer any sixty questions

61.	The	chamber of laminar airflow hood is sterilized by
	(a)	infrared light
	(b)	ultraviolet light
	(c)	microwave
	(d)	radio wave
62.	In n	uminants the bypass protein is the protein, that is
	(a)	degraded by bacteria
	(b)	degraded by fungi
	(c)	protein that escapes the microbial degradation
	(d)	protein that escapes the intestinal digestion process
63.	The	crude fiber percentage in roughages is
	(a)	greater than 18%
	(b)	less than 18%
	(c)	less than 10%
	(d)	less than 5%
64.	The	cell-wall of Gram-positive bacteria is composed of
	(a)	proteoglycan
	(b)	peptidoglycan
	(c)	cellulose
	(d)	chitin
65.	DNA	synthesis mediated by DNA polymerase takes place in
	(a)	G1 phase
	(b)	S phase
	(c)	G2 phase
	(d)	G0 phase

66.	India	ranks position in the world in terms of egg production.		
	(a)	third		
	(b)	first		
	(c)	second		
	(d)	fourth		
67.		ch one is not correct relationship with regard to species and their chromosome obers?		
	(a)	Dog-78		
	(b)	Cat—38		
	(c)	Cattle48		
	(d)	Buffalo—48		
68.	The	ploidy level after colchicine treatment		
	(a)	will increase		
	(b)	will decrease		
	(c)	does not change		
	(d)	Cannot say		
69.	Which of the following types of bond does not exist in double-stranded DNA at 95° temperature?			
	(a)	Phosphodiester bond		
	(b)	Glycosidic bond		
	(c)	Hydrogen bond		
	(d)	Covalent bond		
70.	. En	veloped viruses enter into host cells by		
	(a)	endocytosis only		
	(b)	endocytosis and phagocytosis		
	(c)	endocytosis and membrane fusion		
	(d)	phagocytosis only		

71.	The	bones of domestic animals are derived from embryonic
	(a)	endoderm
	(b)	mesoderm
	(c)	ectoderm
	(d)	epiderm
72.	The	fluoroquinolones inhibit the bacterial growth by
	(a)	targeting protein synthesis
	(b)	targeting DNA synthesis
	(c)	altering membrane integrity
	(d)	inhibiting cell-wall synthesis
73.	The	enzymes increase the rate of reaction by
	(a)	decreasing the energy required to form transition state
	(b)	increasing the kinetic energy of substrate
	(c)	increasing the turnover number
	(d)	increasing the free energy difference between substrate and product
74.	Cyto	toxic T cells express
	(a)	CD8 marker and are class-II MHC restricted
	(b)	CD4 marker and are class-I MHC restricted
	(c)	CD4 marker and are class-II MHC restricted
	(d)	CD8 marker and are class-I MHC restricted
75.	Preg	anglionic neurons of sympathetic nervous system secrete
	(a)	epinephrine
	(b)	dopamine
	(c)	acetylcholine
	(d)	glycine

		A Laboration menopes
76.	Whic	h statement is incorrect about evolution process?
	(a)	Evolution is a product of natural selection
	(b)	Evolution need not always lead to a better phenotype
	(c)	Prokaryotes evolve faster than eukaryotes
	(d)	Evolution is goal-oriented
77.	Whi	ich of the following techniques is named after a name of researcher?
	(a)	Eastern blotting
	(b)	Western blotting
	(c)	Northern blotting
	(d)	Southern blotting
		A second and the second
78.		aphylaxis and transplant rejection belong to which class of hypersensitivity?
	(a)	
	(b)	Type-II and type-IV respectively
	(c)	Type-I and type-III respectively
	(d)	Type-IV and type-II respectively
79	. Cł	noose the option with correct relationship.
	(a)	Dipylidium caninum—Horseshoe-shaped ovary
	(b)	Monezia—Cooked rice grain appearance of gravid segments
	(c)	Stilesia hepatica—Bunch of grape like ovary
	(d)	Echinococcus granulosus—Dumbbell-shaped uterus
80). C1	noose the option with <i>incorrect</i> relationship.
	(a)	•
	(b	
	(c)	
	(d)	Rat-tailed appearance—Oxyuris equi

81.		inched out ulcers in abomasum during post-mortem examination is a pathognomonic sion of			
	(a)	theleriosis			
	(b)	babesiosis			
	(c)	trypanosomiasis			
	(d)	anaplasmosis			
82.	Russ	sel bodies are seen in			
	(a)	RBCs			
	(b)	neutrophils			
	(c)	eosinophils			
	(d)	plasma cells			
83.	Blad	ck tongue condition occurs in			
	(a)	viral infection			
	(b)	bacterial infection			
	(c)	vitamin deficiency			
	(d)	mineral deficiency			
84.	Bio	cornuate uterus is present in			
	(a)	cow			
	(b)	ewe			
	(c)	mare			
	(d)	sow			
85.	Fe	ern like pattern of cervical mucus is due to high content of			
	(a) chloride			
	(b) suiphate			
	(c) potassium			
	(c	l) sodium			

86.	Hormone responsible for growth of mammary gland duct system is					
	(a)	a) prolactin				
	(p)	b) oxytocin				
	(c)	progesterone				
	(d)	estrogen				
87.	The	receptors for steroid hormones are present in				
01.	(a)	cell membrane				
	(a) (b)	cytoplasm				
	(c)	nucleus				
	(d)	chromosome				
	(4)	Cinomosonic				
88.	The	kidney-shaped ovary and cauliflower-shaped corpus luteum is present in				
	(a)	cow				
	(b)	sow				
	(c)	bitch				
	(d)	mare				
20	0					
89.		nmer mastitis is caused by				
	(a)	Staphylococcus sp.				
	(b)	Streptococcus sp.				
	(c)	Corynebacterium sp.				
	(d)	Escherichia coli				
90.	Wor	man's curling hair type of growth is a characteristic of				
	(a)	Bacillus anthracis				
	(b)	Clostridium tetani				
	(c)	Staphylococcus aureus				
	(d)	Streptococcus pneumoniae				

91.	Dimercaprol or British Anti-Lewisite (BAL) is used in acute poisoning of heavy metals, except		
	(a)	lead	
	(b)	cadmium	
	(c)	arsenic	
	(d)	mercury	
92.	The	intermuscular and intramuscular fat of meat is called	
	(a)	marbling and seam	
	(b)	seam and marbling	
	(c)	panniculus and steatosis	
	(d)	steatosis and panniculus	
93.	The	pH range of very good quality meat is	
	(a)	4·3 to 4·7	
	(p)	5·3 to 5·7	
	(c)	6·3 to 6·7	
	(d)	7·3 to 7·7	
94.	ATF	is required by muscles to	
	(a)	contract	
	(b)	relax	
	(c)	contract as well as relax	
	(d)	show striated appearance	
95.	The	term 'mountain oysters' is related to cooked	
	(a)	testicles	
	(b)	kidney	
	(c)	lymph node	
	(d)	spleen	

96	5.	Trich	nomonas fetus causes abortion in
		(a)	first trimester
		(b)	middle trimester
		(c)	last trimester
		(d)	last week
9	7.		ording to the Preservation of Food Adulteration Act (PFA), 1976, cow milk should tain minimum of
		(a)	9.5 percent SNF and 6% milk fat
		(b)	8.5 percent SNF and 2.5% milk fat
		(c)	9.5 percent SNF and 3% milk fat
		(d)	8.5 percent SNF and 3.5% milk fat
9	8.	The	pH of a very good silage ranges between
		(a)	3.7 and 4.2
		(p)	4·7 and 5·2
		(c)	5·7 and 6·2
•		(d)	5·2 and 5·7
9	9.	Blin	d staggers occur due to poisoning of
		(a)	zinc
		(b)	manganese
		(c)	lead
		(d)	selenium
10	0.	Frac	ction of all alleles at a particular locus in a population is called
		(a)	heritability
		(b)	variation
		(c)	gene frequency
		(d)	regression

	(a)	Trypanosomiasis—Buparvaquone
	(b)	Babesiosis—Suramin
	(c)	Theileriosis—Diminazineaceturate
	(d)	Anaplasmosis—Oxytetracycline
102.	Dru	g of choice for treatment of organophosphorous poisoning is
	(a)	carbachol
	(b)	neostigmine
	(c)	atropine
	(d)	All can be used
	_	
103.		ing which stage of prophase-1 crossing-over takes place?
	(a)	Pachytene
	(p)	Leptotene
	(c)	Zygotene
	(d)	Diplotene
104.	The	reagent required to test the milk for presence of detergent is
	(a)	bromothymol blue
	(b)	acetic acid solution
	(c)	ether
	(d)	hydrochloric acid
105.	The	e specific antidote of nitrate toxicity in cattle is
	(a)	sodium thiosulphate
	(b)	desferrioxamine
	(c)	calcium disodium EDTA
	(d)	methylene blue

101. Which of the following relationships between disease and drug of choice is correct?

	(a)	IgM .
	(b)	IgG
	(c)	IgE
	(d)	lgD
107.	Foo	t and mouth disease is caused by
	(a)	single-stranded DNA virus
	(b)	double-stranded DNA virus
	(c)	negative sense single-stranded RNA virus
	(d)	positive sense single-stranded RNA virus
108.	The	e correct statement about meiosis is
	(a)	chromosomes separate in meiosis-I and chromatids separate in meiosis-II
	(b)	chromosomes separate in meiosis-ll and chromatids separate in meiosis-l
	(c)	chromosomes separate in both meiosis-I and -II
	(d)	chromatid separate in both meiosis-I and -II
	_	
109.		munologically privileged sites are
	(a)	thymus, eyes and Peyer's patches
	(b)	testicles, eyes and lymphnode
	(c)	testicles, eyes and brain
	(d)	anterior eye chamber, thymus and bone marrow
110.	N.	noineties eminet block was a land
110.		ccination against bluetongue virus is most essential in
	(a)	
	(b)	
	(c)	goat
	(d)	swine
/110	~	

The antibody involved in immune response against naive antigen is

106.

111.	. The carbohydrate having 4 chiral centres can have number of stereoisom	
	(a)	18
	(b)	19
	(c)	20
	(d)	16
112.	Whi	ch of the following sugar is non-reducing sugar?
	(a)	Lactose
	(b)	Glucose
	(c)	Fructose
	(d)	Sucrose
113.	The	interconversion of α and β anomers of glucose in water is called
	(a)	mutation
	(p)	glucolysis
	(c)	mutarotation
	(d)	anomerization
114.	Oxid	ation of carbon atom of a monosaccharide other than first carbon yields
	(a)	aldonic acid
	(b)	amino acid
	(c)	phosphoric acid
	(d)	uronic acid
115.	The	frequency of branching in case of glycogen is
	(a)	20–30
	(p)	3060
	(c)	1–3
	(d)	8–12

	(a)	Glycosaminoglycan
	(b)	Hyaluronate
	(c)	Chrondoitinsulphate
	(d)	Dextran
117.	The	lipopolysaccharides are predominant in outer-membrane of
	(a)	Gram-positive bacteria
	(b)	Gram-negative bacteria
	(c)	yeast cells
	(d)	All the mammalian cells
118.		triacylglycerols are fatty acid esters of
	(a)	glucose
	(b)	glycerol
	(c)	cholesterol
	(d)	sphingosine
110	¥ 7 2 2 1	
119.		ich of the following lipids is linked to glycerol through ether linkage?
	(a)	Triglycerides
	(b)	Sphingolipids
	(c)	Plasmalogens
	(d)	Cholesterols
120.	3371	
120.		ich of the following amino acids is optically inactive?
	(a)	Tryptophan
	(b)	Glycine
	(c)	Alanine
	(d)	Leucine

116. Which of the following is not heteropolysaccharide?

121.	The	most rigid amino acid is
	(a)	glycine
	(b)	proline
	(c)	phenylalanine
	(d)	alanine
122.		tyrosine is more polar than phenylalanine because of presence of in its zene ring.
	(a)	amino group
	(b)	hydroxyl group
	(c)	carboxyl group
	(d)	sulphahydril group
123.		amino acids are called acid because of presence of
	(a)	carboxyl group
	(b)	amino group
	(c)	sulphahydril group
	(d)	hydroxyl group
124.	The	amino acids dissolved in water are said to be having amphoteric nature due to
	(a)	having both acidic and alkaline nature
	(b)	having only acidic nature
	(c)	having only alkaline nature
	(d)	having two carboxyl groups
125.	The	isoelectric point of an amino acid is the pH at which
	(a)	the amino acids have highly positive charge
	(p)	the amino acids have negative charge
	(c)	the amino acids have no net charge
	(d)	the amino acids have slightly positive charge

126.	The	chemical formation of peptide bond foreasts and	
	(a)	water molecule	
	(b)	carbon dioxide molecule	
	(c)	ammonia molecule	
	(d)	sulphur dioxide molecule	
127.	The	structure of protein describing simple sequence of amino acids is called	
	(a)	quaternary structure	
	(b)	tertiary structure	
	(c)	primary structure	
	(d)	secondary structure	
128.	The	e denature protein is separated electrophoretically by	
	(a)	native PAGE	
	(b)	SDS-PAGE	
	(c)	denatured agarose gel electrophoresis	
	(d)	native agarose gel electrophoresis	
129.		Which of the following carbohydrates is generally used by the animal body to ger energy?	
	(a)	Fructose	
	(b)	Galactose	
	(c)	Glucose	
	(d)	Mannose	
130.	The	e denaturation of proteins indicates	
	(a)	destruction of primary structure of protein	
	(b)	destruction secondary, tertiary and quaternary structure of protein	
	(c)	refolding of proteins	
	(d)	chemical modifications of proteins	

/118-**B**

131. The separation of proteins in SDS-PAGE is based on

- (a) molecular weight of protein
- (b) secondary structure of protein
- (c) tertiary structure of protein
- (d) quaternary structure of protein

132. The pocket of an enzyme molecule where the substrate molecule is called

- (a) active site
- (b) active pocket
- (c) external pocket
- (d) internal pocket

133. The formula

$$V_0 = \frac{V_{\text{max}}[S]}{K_{\text{m}} + [S]}$$

for enzyme kinetics is called

- (a) Nernst equation
- (b) Michaelis-Menten equation
- (c) Lineweaver-Burk equation
- (d) enzyme equation

134. Enzymes that add the phosphate group to a substrate are called

- (a) kinases
- (b) phosphatises
- (c) hydroxylases
- (d) ligases

135. The inactive form of vitamin D present under the skin is chemically

- (a) 1,25-dihydrocholecalciferol
- (b) dehydrocholecalciferol
- (c) 7-dehydrocholesterol
- (d) cholecalciferol

	(a)	Vitamin A
	(b)	Vitamin E
	(c)	Vitamin K
	(d)	Vitamin D
137.	Whi	ch of the following pathways works along with electron transport chain?
	(a)	Oxidative phosphorylation
	(p)	Krebs cycle
	(c)	Urea cycle
	(d)	Glycolysis
138.	The	e difference between the ribose sugar of DNA and RNA exists in
	(a)	5' carbon
	(p)	3' carbon
	(c)	4' carbon
	(d)	2' carbon
139.		e DNA fragments formed during DNA replication in lagging strand are called
	(a)	primers
	(b)	
	(c)	Okazaki fragment
	(d)	degraded fragments
140.	ጥ⊾	a bish shashana in annual tata a control to the con
170.		e high absorbance in spectrophotometry of a biological sample indicates
	(a)	-
	(b)	
	(c)	
	(d)	volatile nature of sample

Which of the following vitamins is needed for blood coagulation?

136.

	(a)	Biuret method	
	(b)	Fiske-Subbarao method	
	(c)	Benedict's method	
	(đ)	Liebermann method	
142.	Whi	ch of the following biomolecules cannot act as antigen?	
	(a)	Protein	
	(b)	Lipopolysaccharides	
	(c)	Heteropolysaccharides linked to protein	
	(d)	Cellulose	
143.	The	CO ₂ is not transported in blood	
	(a)	by hemoglobin	
	(p)	in the form of bicarbonate	
	(c)	dissolved in plasma	
	(d)	by albumin	
144	TL -	intermites of colour of voice income decide	
144.		intensity of colour of urine increases during	
	(a)	rehydration	
	(b)	dehydration	
	(c)	overhydration	
	(d)	over-intake of fatty acids	
145.	Which of the following hormones is released during acute stress?		
	(a)	Norepinephrine	
	(b)	Cortisol	
	(c)	Minerallocorticoids	
	(d)	Glucocorticoids	
	. ,		

141. The protein in serum can be estimated spectrophotometrically by the

	(b)	adrenal cortex
	(c)	pituitary gland
	(d)	hypothalamus
147.	The	milk fever in high-yielding dairy cows occurs due to
	(a)	hypercalcemia
	(b)	hypocalcemia
	(c)	hyperglycemia
	(d)	overfeeding
148.	The	protein synthesis in eukaryotes occurs in
	(a)	nucleus
	(p)	inside the endoplasmic reticulum
	(c)	ribosomes
	(d)	lysosomes
149.	Wh	ich of the following RNA molecules brings amino acids during protein synthesis?
	(a)	rRNA
	(b)	mRNA
	(c)	tRNA
	(d)	SnRNA
150.	The	e enzyme that amplifies the DNA in polymerase chain reaction is
	(a)	DNA polymerase III
	(p)	DNA polymerase α
	(c)	taq polymerase
	(d)	RNA polymerase
/118-	B	32

The hormone epinephrine is synthesized in

(a) adrenal medulla

146.

151.	1. The monoclonal antibodies are characterized by		
	(a)	specificity for more than one epitope of antigen	
	(p)	specificity for only one epitope of antigen	
	(c)	specificity for all epitopes of antigen	
	(d)	specificity of any antigen	
152.	The	first buffalo produced through in vitro fertilization in India was in	
	(a)	IVRI, Izatnagar, Bareilly	
	(b)	NDRI, Karnal, Haryana	
	(c)	CDRI, Lucknow	
	(d)	IMTech, Chandigarh	
153.	The	outer protein covering of viruses is called	
	(a)	outer membrane	
	(b)	inner membrane	
	(c)	capsid	
	(d)	prion	
154.	Whic	ch of the following differential media can be used to diagnose genus Salmonella?	
	(a)	EMB agar	
	(p)	Blood agar	
	(c)	Brilliant green agar	
	(d)	Nutrient agar	
155.	The is	enzyme synthesized by the bacteria that has the capability to degrade the penicillin	
	(a)	proteinase	
	(b)	beta-lactamase	
	(c)	alpha-lactamase	
	(d)	beta-glycosidase	

156.	he vaccine against foot and mouth disease that is currently used in India is	
	a) DNA vaccine	
	o) live vaccine	
	e) killed vaccine	
	d) subunit vaccine	
157.	The autoclave kills the microbes by	
	a) dry heat	
	b) moist heat	
	c) UV rays	
	d) infrared rays	
158.	For preparing 100 ml of normal saline solution, 0.9 gram of NaCl will be taken a	ınd
	a) 100 ml of water will be added	•
	b) water will be added up to 100 ml	
	c) 99·1 ml of water will be added	
	d) water will be added up to 99·1 ml	
159.	For long-term immunity, the antigen is injected	
	a) intravenously	
	b) intramuscularly	
	c) subcutaneously	
	d) orally	
160.	Which of the following antibiotics prevents the formation of cell-wall in Gram-posit pacteria?	tive
	a) Tetracycline	
	b) Gentamicin	
	c) Ampicillin	
	d) Streptomycin	

SPACE FOR ROUGH WORK

/118-**B** 35 { P.T.O.

SPACE FOR ROUGH WORK