
PHYSICS

- 1. The dimensions of entropy are
 - (A) $M^0L^{-1}T^0K$
- (B) $M^0L^{-2}T^0K^2$ (C) $MLT^{-2}K$ (D) $ML^2T^{-2}K^{-1}$
- 2. In a vernier calipers, p divisions of its main scale match with (p+1) divisions on its vernier scale. Each division of the main scale is k units. Using the vernier principle, its least count will be
 - (A) k = (1/p)
- (B) (k+1)/p
- (C) (p+1)/k (D) k/(p+1)
- The torque of a force $\vec{F} \bullet \vec{i} \not \approx \vec{k}$ acting at a point $\vec{r} \bullet \vec{7} \vec{i} \not \approx \vec{k}$ is 3.
 - (A) $\vec{i} = 24\vec{j} + 34\vec{k}$

(C) $15\vec{i}$ 224 \vec{i} 834 \vec{k}

- (D) $5\vec{i} \approx \vec{i} \ 834\vec{k}$
- Two springs of force constants k₁ and k₂ are connected as shown in figure 4. below. The time period of vertical oscillation of mass m is given by

(B) $2 \blacktriangle \sqrt{\frac{m(k_1 \times k_2)}{k_1 k_2}}$

(C) $2 \triangle \sqrt{\frac{m(k_1 \ \& k_2)}{k_1 k_2}}$

(D) $2 \blacktriangle \sqrt{\frac{m}{(k_1 \ \Re k_2)}}$