

(Civil Engineering)

Tir	Fime: 3 hours			
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B 		
		PART –A		
1.	a)	Verify whether Poisson Distribution is probability mass function	(3M)	
	b)	Define Maximum error estimate	(2M)	
	c)	Write the test statistic for two way ANOVA classification	(3M)	
	d)	Write the normal equations for the least square curve of the form $y = ab^{x}$	(2M)	
	e)	What is the purpose of control charts	(2M)	
	f)	Write the mean and variance of standard normal distribution	(2M)	
		PART -B		
2.	a)	A sample of 4 items is selected at random from a box containing 12 items	of (7M)	

reselected $(7M)$
ic selected (7M)
activa
(7M)
(7141)
mean and (7M)
th (14M)
t be (7M)
with mean
to run a (7M)
1
+
i)

Test whether the two horses have the same running capacity.

(R16)

6. a) Fit the curve $y = ae^{bx}$ for the following data and also estimate y(2.4) for the (7M) following data

Х	2	4	6	8	10	12
у	1.8	1.5	1.4	1.1	1.1	0.9

(7M) b) Calculate the two regression lines from the following data х y

7. a) Draw the control chart for \overline{X} , R chart for the following data for A₂ = 0.483 (7M) Sam ple Mea n Ran ge

b) If the average fraction defective of a large sample of products is 0.1537 (7M) calculate the control limits

(Civil Engineering)

Tiı	ne: 3	3 hours	× ·	0 0,		Max.	Marks: 70
		Note: 1. Question Pa 2. Answer AL 3. Answer any	aper consists L the quest FOUR Qu	s of two parts ion in Part- A sestions from	s (Part-A and A Part-B	Part-B)	
		~~~~~~~~~~	 <u>PAR'</u>	~~~~~~~~~~ <u>Г –А</u>	~~~~~~~	~~~~	
1.	a)	Write the density function of	f Gamma di	stribution.			(2M)
	b)	Write the moment generating	g function o	f Normal dis	tribution.		(2M)
	c)	State central limit theorem.	-				(2M)
	d)	Find the z – statistics for $\bar{x}$	$= 40, \mu = 4$	$40.\sigma = 5.8.\tau$	n = 64		(3M)
	e)	What is mean by goodness of	f fit ?	10,0 010,1			(2M)
	f)	Find upper and lower $3-\sigma \cos 0.6230$ and standard deviatio	ontrol limits on of 0.032 PAR	for means of <b>T -B</b>	f 4 samples w	ith mean is	(3M)
2	a)			<u></u>	• . ••		(7M)
2.	u) b)	Find the moment generating If $P(x = 2) = 0P(x = 4)$	function to $OOP(x - x)$	r binomial d	istribution	than find	$(7\mathbf{M})$
	0)	(i) $P(x < 2)$ (ii) $P(x \ge 1)$	-90F(x - 2)	+0)101 a F01	sson variate		(/101)
3.	a)	Obtain the moment generatir	ng function	of random v	ariable X hav	ing density	(7M)
		$\left \frac{x}{2}, 0\right  \le$	$\leq x < 1$				
		function $f(x) = \begin{cases} 2 \\ 3-x, 1 \le \end{cases}$	<i>x</i> < 2				
		0 oth	nerwise				
	b)	If X is Normally distributed P( X - 2  > 0.01)	1 with mean	n 2 and varia	nce 0.1, then	find	(7M)
4.	a)	Define unbiased estimator ar	nd show tha	t x/n is an un	biased estim	ator of	(7M)
	b)	binomial parameter p. Let $S = \{1, 5, 6, 8\}$ find the e	angh ghilitry	distuilantism s	f the commute	maan fan a	(7M)
	0)	random sample size two drav	wn without	replacement.	Also find (i)	The mean of	(/11/1)
		the sampling distribution of r	means (ii)	The standard	deviation of	the sampling	
5	a)	distribution of means Three samples each of size '	5 were dra	wn from thre	ee uncorrelate	ed normal	(7M)
0.	)	populations with equal variat	nces .Test t	he hypothesis	s that the popu	ulation	(7112)
		means are equal at 5% level	2	0	16	12	
		Sample II 9 7	1	12	10	13	
		Sample III 14 1	1	15	14	16	
	b)	A sample of 26 bulbs gives a	a mean life	of 990 hours	with a S.D of	f 20 hours.	(7M)
		The manufacturer claims that	t the mean	life of bulbs i	s 1000 hours	is the sample	
		not up to the standard.	1	of 2			
			I				



1		$\nearrow$
(	D14	)
1	K10	1
$\sim$		/

6. a) Fit the curve  $y = ab^x$  for the following data and also estimate y(9) for the (7M) following data

Х	2	4	6	8	10	12
у	1.8	1.5	1.4	1.1	1.1	0.9

(7N)	$(\mathbf{N})$

b)	Calculate	e the coe	fficient o	f correlat	tion from	the follo	owing da
	Х	50	60	70	90	100	
	у	65	51	40	26	8	

7. a) Draw the control chart for  $\overline{X}$  for the following data for A₂ = 0.483 (7M) Sam 1 2 3 4 5 6 7 8 9 10 ple  $M_{12}$  282 509 505 582 557 227 514 (14 707 752)

Pie										
Mea	383	508	505	582	557	337	514	614	707	753
n										
Ran	95	128	100	91	68	65	148	28	37	80
ge										

b) Explain "Statistical quality control (SQC)".

(7M)

|"|"||"||"|||



(Civil Engineering)

Tir	ne: 3	8 hours		(		Sincering)				Max.	Marks: 70
		No	ote: 1. Ques 2. Ansv 3. Ansv	tion Paper wer ALL th wer any FC	consists ne questi OUR Que	of two part on in <b>Part</b> - estions from	is (I A n Pa	Part-A an art-B	d <b>Part</b>	-B)	
		~	~~~~~~~	~~~~~~~	<u>PART</u>	<u>'-A</u>	~~~	~~~~~~	~~~~	~~	
1.	a)	Write the d	listribution	for tossing	a coin t	wo times					(2M)
	b)	Write the t	est statistic	for differe	nces of t	wo means					(2M)
	c)	Write the r	normal equa	ations for tl	ne curve	$y = a + \frac{b}{a}$					(2M)
	d)	Find the m proportion	aximum er (p) is 0.57'	ror estimat 75 for 400	e with 95 samples	$\frac{x}{5\%}$ confider	nce	if the same	nple		(3M)
	e)	Define upp	ber and low	er 2-σ limi	ts for c-c	hart					(2M)
	f)	Find the <i>P</i> Distributed	P(X > 2150)	0) if $\mu =$	2040 &	$\sigma = 60 \text{ Ass}$	sum	ne X is No	ormally	7	(3M)
					<u>PAR</u> 1	<u>-B</u>					
2.	a)	Fit a binon	nial distrib	ution to the	followi	ng data		4	5		(7M)
	b)	Find the m	0 42	orating fund	tion for	o Poisson dis	stril	4 oution	1		(7M)
2	,		e	U				1-			
3.	a)	Find (i) me	ean (iii) va	riance of th	e Distrib	pution $f(x)$	=	$\frac{\kappa}{x^2+1}$ if	- ~ <	$x < \infty$	(/M)
	b)	Obtain the	moment ge	enerating fu	inction o	of normal di	istri	bution			(7M)
4.	a)	A sample of with the S.	of 11 rats fr D of 0.61.E f the popul	om central Estimate 95	populati % confid	ion had on a dence limits	ave s fo	rage bloo r the mea	d visco n blood	sity 1	(7M)
	b)	Define bias	sed estimat	or and prov	ve that (	$\left(\frac{x+1}{n+2}\right)$ is a	ı bia	ased estin	nate of		(7M)
		binomial p	arameter p.								
5.	a)	a) 20 people were attacked by a disease and only 18 survived. Will you reject the hypothesis that the survival rate if attacked by this disease is 85% in favour of the hypothesis that is more at 5% lowel.							ect the your of	(7M)	
	b)	Three different machines are used for a production. On the basis of the outputs , test whether the machine are equally effective							outputs	(7M)	
		Machine	I M	lachine II	Ma	achine III		-			
		10	9		20						
		5	7		16			4			
		10	5		10			<u> </u>			
		10	0		1 (	of 2		L			

|"|""||"||"||||

$\left( \right)$	R16	$\Big)$
$\overline{)}$	K10	Ϊ

6. a) Fit the curve  $y = a+bx+cx^2$  for the following data and also estimate y(2.4) for (7M) the following data

Х	1	2	3	4
у	1.7	1.8	2.3	3.2

- b) Determine the coefficient of correlation from the following data N= 25, (7M)  $\sum x = 127, \sum y = 100, \sum x^2 = 760, \sum y^2 = 449, \sum xy = 500$
- 7. The number of defects on 20 items are given below
   (14M)

   Item No. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
   (14M)

   No. of defects:2,0,4,1,0,8,0,1,2,0,6,0,2,1,0,3,2,1,0,2
   Devise a suitable control scheme for the future



(Civil Engineering)

Tin	fime: 3 hours			
		<ul> <li>Note: 1. Question Paper consists of two parts (Part-A and Part-B)</li> <li>2. Answer ALL the question in Part-A</li> <li>3. Answer any FOUR Questions from Part-B</li> </ul>		
		<u>PART –A</u>		
1.	a)	Obtain the binomial distribution with mean 3 and variance 4	(2M)	
	b)	Kind the value of 'k' and mean if $f(x)$ is a density function given by $f(x) = \begin{cases} kx^2, & \text{if } 0 < x < 3\\ 0, & \text{otherwise} \end{cases}$	(3M)	
	c)	Write all possible samples of size two with replacement from the populatio $\{5,10,14,18,13,24\}$	on (2M)	
	d)	Give an example for Type-I and Type-II errors	(2M)	
	e)	Write the two regression lines X on Y and Y on X	(2M)	

f) Find 3- $\sigma$  limits for  $\overline{X}$  chart if  $\sum \overline{X} = 595.8$ ,  $\sum \sigma = 8.28$ , n = 18,  $A_{1=1.03}$  (3M)

#### PART -B

2.	a)	A player wins if he gets 5 on a single throw of a die. He loses if he gets 2 or 4	(7M)
		If he wins he gets Rs.50, if he loses he gets Rs. 10, otherwise he has to pay	
		Rs.15. Find the value of the game to the player	
	b)	Fit a Poisson distribution to the following data	(7M)

)	Fit a Poisson distribution to the following data							
	Х	0	1	2	3	4	5	
	f	142	156	69	27	5	1	

3. a) Find the mean and variance of Gamma distribution (7M)

b) Find (i) density function (ii) Mean (iii) variance of the distribution (7M)  $F(X) = 1-e^{-2x}$  if x>0

- 4. a) A random sample of 400 items is found to be have mean 82 and S.D of 18 Find (7M) the maximum error estimate of 95% confidence interval
  - b) Let S = {3,,6,9,15,27}, find the probability distribution of the sample mean for (7M) a random sample size three drawn without replacement and also find (i) The mean of the sampling distribution of means (ii) The standard deviation of the sampling distribution of means



5. a) Three samples of 5, five and four motor car tyres are drawn respectively from (10M) three brands A, B, C manufactured by three machines. The life time of three tyres (in 1000 miles) is given below. Test whether the average life time of three brands of tyres are equal or not

linee oranas or tyres are equal or not						
А	В	С				
35	30	28				
40	25	24				
33	34	30				
36	28	26				
31	33					

b) Write the procedure for testing of the hypothesis

(4M)

6. a) Fit the linear curve y = a+bx for the following data and also estimate y(4) for (7M) the following data

	Х	1	2	3	4	5	6	
	у	6	4	3	5	4	2	
b)	D) Find the rank correlation for the following data							(7M

Find the rank correlation for the following data								
Х	2	4	5	6	8	11		
У	18	12	10	8	8	5		

7.

(14M)

Discuss the basic principles under lying control Charts. Explain in brief how control limits are determined for i) P-chart ii) C-chart (iii) np-chart