III B. Tech I Semester Supplementary Examinations, May - 2019
 SIGNALS AND SYSTEMS

(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) State the condition for BIBO stability of the system.
b) Write the trigonometric Fourier series representation of periodic signal with [2M] fundamental period T_{0}.
c) What is aliasing effect?
d) Write the output response of $x(t) * \delta\left(t-t_{0}\right)$, where $x(t)$ is a continuous signal.
e) State the relationship between Laplace transform and Fourier transform.
f) Find the Z transform for casual signal $\mathrm{x}(\mathrm{n})$.

PART -B

2. a) A rectangular function $f(t)$ is defined by
$f(t)=1 ; 0<t<\pi$ and $f(t)=-1 ; \pi<t<2 \pi$ Approximate this function by a waveform sint over the interval $[0,2 \pi]$. Find the optimum value such that mean square error is minimum.
b) Define and sketch the following signals:
i) Signum Function
ii) Impulse function
iii) Unit step function
3. a) Find the Fourier series expansion of halfwave rectified sine wave shown below.

b) State and prove Parseval's theorem.
4. a) Explain the following terms:
i) Natural sampling
ii) Importance of sampling theorem.
b) Determine the Nyquist rate for the given continuous time signal:
$\mathrm{x}(\mathrm{t})=6 \cos 50 \pi \mathrm{t}+20 \sin 300 \pi \mathrm{t}+10 \cos 100 \pi \mathrm{t}$.
5. a) State and Prove Properties of auto correlation function.
b) Find the impulse response and Transfer function of the following circuit:

1 of 2
6. a) If $F(s)=(s+2) /(s+3)(s+4)$, find all possible $f(t)$.
b) Define Laplace transform. Distinguish between Laplace transform and [7M] continuous time Fourier transforms.
7. a) Determine the final value of the signal corresponding to the following Z-transform:

$$
X(Z)=\frac{2 Z^{-1}}{1-1.8 Z^{-1}+0.8 Z^{-2}}
$$

b) State and prove any four z-transform properties.

