Time: 3 hours

SET - 1

Max. Marks: 70

III B. Tech I Semester Supplementary Examinations, May - 2019 COMPILER DESIGN

(Computer Science and Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer **ALL** the question in **Part-A**

		3. Answer any FOUR Questions from Part-B	
		PART –A	
1.	a)	What is the role of compiler in bootstrapping operation?	[2M]
	b) c)	Write context free grammar for polish notation of arithmetic expressions. Construct parse tree and syntax tree for 4-6/3*5+7.	[2M] [2M]
	d)	Apply translation scheme to generate three-address code a b or c <d.< td=""><td>[3M]</td></d.<>	[3M]
	e) f)	Write in detail about the sub-division of run-time memory. Copy propagation leads to dead-code elimination, justify this with example.	[3M] [2M]
		PART -B	
2.	a)	Write short notes on hierarchical and linear analysis operations.	[7M]
	b)	Regular expressions are important for lexical analysis? Explain the reason with examples.	[7M]
3.	a)	G: S \rightarrow (L) a L \rightarrow L,S R, R \rightarrow b for the given grammar find LR(0) items.	[7M]
	b)	For the above grammar G construct LR parsers and explain how shift, reduce accept or reject operations are performed.	[7M]
4.	a)	Write a short note on error recovery with LR parsers. How it is different from LL parsers?	[7M]
	b)	List and explain the algorithmic steps to construct LALR parser for grammar $S\rightarrow L=R RL\rightarrow *R idR\rightarrow L$.	[7M]
5.	a)	Explain the role of type checking in error detection and recovery.	[7M]
	b)	Write various semantic routines used to construct abstract syntax tree with an example.	[7M]
6.	a)	Write pseudocode for finding sum of 'n' numbers. And identify basic blocks then construct the flow graph for it. Explain the rules used for this.	[7M]
	b)	How to access non-local data? Explain implication details with example.	[7M]
7.		Explain the following two classes of local machine independent transformations i) Structure preserving transformations ii) Algebraic transformations.	[14M]
