41. When a positively charged particle enters a uniform magnetic field with uniform velocity its

2) (i) or (ii) only

trajectory can be (i) a straight line (ii) a circle (iii) a helix

- 1) (i) only
- 3) (i) or (iii) only 4) Any one of (i),(ii) and (iii)

42. **Identify the wrong statement**

- 1) Eddy currents are produced in a steady magnetic field
- 2) Eddy currents can be minimized by using laminated core
- 3) Induction furnace uses eddy currents to produce heat
- 4) Eddy currents can be used to produce breaking force in moving trains.
- **43**. The electric flux for Gaussian surface A that encloses the charged particles in free is (given,

 $q_1 = -14nC, q_2 = 78.85nC, q_3 = -56nC$)

3) $6.32 \times 10^3 Nm^2 C^{-1}$ 4) $6.32 \times 10^3 CN^{-1}m^{-2}$

4) AND gate

For the given digital circuit, identify the logic gate if 44.

2) $10^3 CN^{-1}m^{-2}$

1) OR gate

1) $10^3 Nm^2 C^{-1}$

Oxygen is 16 times heavier than hydrogen. Equal volumes of hydrogen and oxygen are mixed. 45. The ratio of speed of sound in the mixture to that in hydrogen is

1)
$$\sqrt{8}$$
 2) $\sqrt{2/17}$ 3) $\sqrt{1/8}$ 4) $\sqrt{32/17}$
CHEMISTRY

The wavenumber of a spectral line for a given transition is $x cm^{-1}$ for He^+ , then its value for 46. Be^{+3} for the same transition is $\left\lceil cm^{-1} \right\rceil$

- 3) $\frac{x}{4}$ 1) x 2) 4*x* 4) 16*x*
- The de- Broglie wavelength of an electron travelling with velocity equal to 10 % of velocity of 47. light is 4) 2424 pm
 - 1) 242.4 pm 2) 24.2 pm 3) 2.42 pm
- Identify the incorrect statement among the following **48**.
 - 1) Among isoelectronic species smaller the positive charge, smaller the radius
 - 2) Among isoelectronic species greater the negative charge, larger the radius
 - 3) Atomic radius increases down the group and decreases across a period
 - 4) The decrease in radius is less in d- block due to poor screening effect of d- orbital

	SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP&TS					
49.	The incorrect match among the following					
	1) SF_4 - tetrahedral	5 -	2) ClF_3 - T shape			
	3) H_2S - angular	÷	4) BrF_5 - square pyramidal			
50.	At 400 K the root mean square velocity of a gas X of molecular weight 40 is equal to the most					
	probable velocity of another gas Y at 60 1) 8 2) 12	3) 16	4) 4			
51.	The weight of a dibasic acid of molecula	·	,			
	aqueous solution to give 0.1 normal solution is					
	1) 1g 2) 2g	3) 10 g	4) 20 g			
52.	The compounds with non zero dipole me					
	A. CCl_4 B. Quinol	C. P- dichlorobenze	5			
53.	1) A and B only 2) B and C only The correct order of bond order for the	3) B and D only following is	4) A,B,C,D			
201						
	1) $CN^- > O_2^+ > O_2 > O_2^-$ 2) $O_2^- > O_2 > O_2^+ > CN^-$ 3) $O_2^+ > O_2^- > CN^- > O_2$ 4) $O_2^- > O_2^+ > O_2 > CN^-$					
54.						
041	1) LiF 2) CsF	3) $BeCl_2$	4) LiI			
55.	The number of electrons transferred in	, 2	$^{2} \rightarrow Mn^{+2} + SO^{-2}$ is			
	1) 5 2) 3	3) 10	4) 0			
56.	Which of the following weighs more	-, -) -			
	1) 5g atoms of calcium	2) 67.2 litres of O_2 a	2) 67.2 litres of O_2 at STP			
	3) 1 g mole of CO_2	4) 3×10^{24} atom of c	4) 3×10^{24} atom of carbon			
57.	Which of the following combinations cannot act as buffer solution					
	1) 200 ml 0.1 M $CH_{3}COOH$ + 200 ml 0.1 M $NaOH$					
	2) $200 ml \ 0.1 M \ CH_3 COOH + 200 ml \ 0.1 M \ CH_3 COONa$					
	3) $20 m l \ 0.5 M \ HCN + 20 m l \ 0.5 M \ NaCN$					
	4) $50 m l \ 0.1 M \ NH_4 OH + 50 m l \ 0.1 M \ NH_4 C l$					
58.	An ideal gas expands in volume from 10^{-4} to 10^{-3} m ³ at 300 K against a constant pressure of					
	$2 \times 10^5 Nm^{-2}$. The work done is					
	1) -180 KJ 2) – 180 J		4) + 900 J			
59.	The dissociation energy of CH_4 is 400 K Cal mol^{-1} and that of ethane is 670 K Cal mol^{-1} . The					
	C-C bond energy is (K Cal mol^{-1})					
	1) 270 2) 70	3) 200	4) 240			
60.	At 200 K the equilibrium constant Kc fo	or the following reaction i	s 0.5 $\frac{1}{2}A_2 + \frac{1}{2}B_2 \rightarrow AB$. Then			
	the equilibrium constant for the reaction					
	1) 0.04 2) 0.4	3) 4	4) 25			
61.	Identify the correct statement	,	,			
	1) Stability of carbonates increases down the group in alkali metals					
	2) $BaSO_4$ is more soluble than $CaSO_4$ in water					
	3) <i>Li</i> , <i>Mg</i> , <i>Be</i> doesnot give flame test					
	4) Chemical formula of calgon is $Na_2Al_2Si_2O_8.xH_2O$					
62.	Which of the following indicates high lev 1) High DO, high TLV					
) High DO, high TLV2) High COD, high BOD) High DO, low COD4) Low COD, low BOD					
	, , .,	,				

72. The rate constant K_1 for one reaction is double the rate constant K_2 for another reaction. The relation between the corresponding activation energies Ea_1 and Ea_2 is

1)
$$E_{a_1} > E_{a_2}$$
2) $E_{a_1} < E_{a_2}$ 3) $E_{a_1} = 4E_{a_2}$ 4) $E_{a_1} = 4E_{a_2}$ 73. The correct statement regarding extraction of Al from bauxite is
A. During Halls process silica is removed as vapours
B. During Baeyers process, red bauxite is purified using NaOH
C. Aluminium is refined by Hall Herault process
1) Only A2) Only B3) A and B only4) A and C only

	SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP&TS						
74.	The complex that show geometric and optical isomerism is						
	1) $Cis [Co(en)_2 Cl_2] Cl_2$		2) $trans - \left[Co(en)_2 Cl_2\right]Cl$				
	3) $\left[Co(NH_3)_4 Cl_2\right]Cl$ 4) $\left[Co(NH_3)_3 Cl_3\right]$						
75.	The spin only magneti		^{+x} is 4.9 B. M. The value	e of x is			
	1) 3	2) 2	3) 4	4) 5			
76.	The distribution of electrons ions in $\left[Mn(H_2O)_6\right]^{+2}$ in d-orbitals is						
	1) $t_{2g}^5 eg^0$	2) $t_{2g}^3 eg^2$	3) $t_{2g}^2 eg^3$	4) $t_{2g}^4 eg^1$			
77.	1 mole of an ammino cobalt (III) chloride complex on treatment with excess $AgNO_3$ solution						
	gives 287 g of AgCl. The number of chloride ion that satisfies both primary and secondary						
	valency is 1) 2	2) 3	3) 1	4) 0			
78.	Identify the incorrect s	/	/	4)0			
	A. Basic nature of hydrides increases from NH_3 to BiH_3						
	B. H_2S is most volatile hydride of VIA group elements						
	C. The correct order of acidic nature of hydrides of VIIA group elements is HI > HBr > HCl >						
	HF						
	D. The correct order of oxidising ability of oxyacid of chlorine is $HClO_4 > HClO_3 > HClO_2 > HOCl$						
	1) A and D	2) B and C	3) A.B.C	4) A,B,C,D			
79.	Which of the following	,	, , , ,	.),2,2,2,2			
	1) $XeF_2 - Linear - SP^3d$ hybridised 2) $BrF_5 - square \ pyramidal - SP^3d$ hybridsed						
	3) SO_2 – angular – SP^2 hybridised 4) SO_3 – triagonal planar – SP^2 hybridsed						
80.	$B_2H_6 + NH_3 \xrightarrow{200^0C} A$. The emperical formula of the compound A is						
	1) BNH	2) <i>CH</i>	3) <i>BNH</i> ₂	4) $B_2 NH$			
81.	The number of hydrogen bonds in the sequence of a structure of a double helical DNA						
	$5^1 ATGCCTAAT3^1$ is						
0.2	1) 19	2) 21	3) 24	4) 20			
82.	The bacteriostatic anti A. Ofloxacin	e	C. Chloramphenicol	D Frythromycin			
			3) B, C, D only				
83.	Which of the following	-	-				
	A. Teflon 1) A and D only	B. Glyptal 2) A and B only	C. Nylon 6,6 3) B and C only	D. BUNA-S			
84.	· •	· •		-			
	A compound (A) with molecular formula $C_4H_8Cl_2$ on basic hydrolysis forms a product B. B gives a orange red precipitate with 2,4- DNP but does not reduce Tollens reagent. The						
	structure of A is						
	1) $CH_3CH_2CHClCHCl$!	2) $CH_3 CH_2 CCl_2 CH_3$				
	$3) CH_3 CH_2 CH_2 CHCl_2$	-	4) $CH_3 CHCl CHCl CH_3$				
85.	$C_2H_5Cl \xrightarrow{KCN} A \xrightarrow{H_3C}$	$\xrightarrow{D^+} B \xrightarrow{C_2 H_5 OH} C$ the	IUPAC name of C is				
	1) Ethyl propanoate 2) Methyl propanoate 3) Propylethanoate 4) Ethyl ethanoate						
86.	$CH_3CHO \xrightarrow{NaOH} A \xrightarrow{\Lambda} B$. The product B is						
	1) $CH_3 - CH_2 - CH_2 - CH_2 - OH$ 2) $CH_3 - CH = CH - CHO$						
	3) $CH_3 - \overset{0}{C} - CH_3$						
	3) $CH_3 - C - CH_3$		4) $CH_3 - CH_2 - CH_2$	CH ₃			

D. Platelets