CHEMISTRY

46. The solubility product of a salt having general formula $M X_{2}$, in water is 4×10^{-12}. The Concentration of M^{2+} ions in the aqueous solution of the salt is
1) $4 \times 10^{-1} \mathrm{M}$
2) $1.6 \times 10^{-4} \mathrm{M}$
3) $1 \times 10^{-4} \mathrm{M}$
4) $2 \times 10^{-6} \mathrm{M}$
47. The Bond order in NO is 2.5 . While that in NO^{+}is 3 . Which of the statements is true for these two species?
1) Bond length in NO^{+}is greater than in NO
2) Bond length in NO is greater than in NO^{+}
3) Bond length in NO^{+}is equal to that in NO
4) Bond length is unpredictable
48. Density of equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 1 atm and 384 K is 1.84 gdm . Calculate the equilibrium constant of the reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons-2 \mathrm{NO}_{2}$
1) 2.09 atm
2) 9.02 atm
3) 3.6 atm
4) 6.3 atm
49. ΔH and ΔS for the reaction
$B r_{2}(l)+C l_{2}(g) \rightarrow 2 \mathrm{BrCl}(g)$ are $29.37 \mathbf{K J}$ and $104 \mathbf{~ J k}^{-1}$ respectively. Above what temperature willthis reaction become spontaneous?
1) Above 150 K
2) above 282.4 K
3) above 153.5 K
4)above 263.4 K
50. The correct order of magnetic moments (spin only values in $\mathbf{B M}$) among the following is
1) $\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
2) $\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{CoCl}_{4}\right]^{2-}$
3) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}$
4) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{MnCl}_{4}\right]^{2-}$
51.

$$
\begin{array}{r}
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3} \rightarrow \frac{(\mathrm{i}) \mathrm{X}}{(\mathrm{ii}) \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}} \quad \mathrm{CH}_{3}-\mathrm{C}-\mathrm{C}-\mathrm{CH}_{3} \\
\left\|\|_{\mathrm{O}}\right.
\end{array}
$$

in the above reaction X is

1) HNO_{3}
2) O_{2}
3) O_{3}
4) KMnO_{4}
52. What mass of $\mathrm{Mg}(\mathbf{O H})_{2}$ is required to neutralize 125 ml of $\mathbf{0 . 1 3 6 ~ M ~} \mathrm{HCl}$ solution?
1) 0.248 g
2) 0.992 g
3) 1.98 g
4) 0.496 g
53. In the following sequence of reactions, what is D

1) Primary Amine
2)

3) Phenyl isocyanate 4) NH_{2}
54.

How many isomeric forms does the compound A exist?

1) 3
2) 4
3) 2
4) 1
55. If uncertainly in the position of electron is $0.9 \mathrm{~A}^{0}$. The uncertainly in it's velocity is
1) $5.8 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$
2) $5.8 \times 10^{8} \mathrm{~cm} / \mathrm{sec}$
3) $6.4 \times 10^{7} \mathrm{~cm} / \mathrm{sec}$
4) $0.64 \times 10^{7} \mathrm{~cm} / \mathrm{sec}$
56. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \xrightarrow[\mathrm{Hcl}]{\mathrm{NaCN}} X \xrightarrow[\Delta]{\mathrm{H}_{3} \mathrm{O}^{+}} Y$.

In the above sequence of reactions X and Y are

1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CN}, \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COOH}$
2) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CN},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH})_{2}$
3) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CN},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$
4) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CN},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$
57. The time requires to coat a metal surface of $80 \mathrm{~cm}^{2}$ with $5 \times 10^{-3} \mathrm{~cm}$ Thick layer of silver (density $1.05 \mathrm{~g} / \mathrm{cm}^{3}$) by passing a current of 3 amp through AgNO_{3} solution is
1) 115 sec
2) 125 sec
3) 135 sec
4) 145 sec
58. Biodegradable polymer which can be produced from glycine and aminocaproic acid is
1) Buna - N
2) Nylon 6,6
3) nylon 2- nylon6
4) PHBV
59. Which of the following compounds is an anti fertility drug?
1) Aspirin
2) Penicillin
3) Chloromycetin
4) norethindrone
60. $X \stackrel{H I}{\longleftrightarrow}$ Glu $\cos e \xrightarrow{\mathrm{HNO}_{3}} Y$. what are \mathbf{X} and Y ?
1) n- Hexane andgluconic acid
2) Gluconic acid and saccharic acid
3) n- Hexanol and saccharic acid
4) n- hexane and saccharic acid
61. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{PCC}} A \xrightarrow{\mathrm{NaOH}} B$. Then ' \mathbf{B} ' is
1) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
2) $\mathrm{CH}_{3} \mathrm{CHO}$
3) $\mathrm{CH}_{3}-\mathrm{COOH}$
4)
5) $\begin{gathered}\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CHO} \\ \mathrm{OH}\end{gathered}$
62.

63. Which of the following order is true regarding the acidic nature of phenol?

1) Phenol > O-cresol > O - Nitro phenol
2) Phenol > O-cresol < O - Nitro phenol
3) Phenol< O-cresol < O - Nitro phenol
4) Phenol<O- cresol > O - Nitro phenol
64. In the following reaction. X and Y respectively are
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{KMnO}_{4} / \mathrm{H}^{+}} X \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4} / \Delta]{Y} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
1) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
2) $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{OH}$
3) $\mathrm{CH}_{2}=\mathrm{CH}_{2}, \mathrm{CH}_{3}-\mathrm{COOH}$
4) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
65. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \xrightarrow{\text { aqKOH }} A \xrightarrow{\mathrm{Na}} \mathrm{B} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}} \mathrm{C}$ identify C in the above reaction
1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
3) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$
4) $\mathrm{C}_{4} \mathrm{H}_{10}$
66. A fuel cell involves combustion of the butane at $1 \mathbf{a t m}$ and 298 K

$$
C_{4} H_{10_{(g)}}+\frac{13}{2} O_{2_{(g)}} \rightarrow 4 \mathrm{CO}_{2(g)}+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta G^{0}=-2746 \mathrm{KJ} / \mathrm{mol}
$$

What is E^{0} of the cell?

1) +4.74 V
2) +0.547 V
3) +1.09 V
4) +4.37 V
67. For which of the following, the units of rate constant and rate of reaction of same
1) Zero order
2) First order
3) second order
4) Third order
68. The density of an ideal gasis $0.03 \mathrm{~g} / \mathrm{cm}^{3}$, its pressure is $10^{6} \mathrm{dy} / \mathrm{cm}^{2}$. What is its R.M.S velocity in $(\mathbf{C m} / \mathrm{s})$
1) 10^{8}
2) 3×10^{4}
3) 1×10^{6}
4) 1×10^{4}
69. 100 g of lime stone on heating produced 22 g of CO_{2}. The percentage of CaCO_{3} in lime stone is
1) 80%
2) 60%
3) 50%
4) 87.66%
70. For the reaction $2 \mathrm{H}_{\mathbf{2 (g)}}+\mathbf{O}_{\mathbf{2 (g)}} \rightarrow \mathbf{2 H}_{\mathbf{2}} \mathrm{O}_{(\mathrm{g})} ; \Delta H=-571 K J$ bond energy of $(\mathbf{H}-\mathbf{H})$ is $\mathbf{4 3 5} \mathrm{KJ}$ and $(\mathrm{O}=\mathrm{O})$ is 498 KJ . Then calculate the average bond energy of $(\mathrm{O}-\mathrm{H})$ bond using the above data
1) 484 KJ
2) 884 KJ
3) 271 KJ
4) 279 KJ
71. The correct order of electrical conductivity of alkali metal ions in aqueous solution is
1) $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
2) $\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{K}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}$
3) $\mathrm{Li}^{+}>\mathrm{Na}^{+}<\mathrm{K}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}$
4) $\mathrm{Li}^{+}<\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
72. Which of the following statement is correct
1) Atomic radius of Na is greater than that of Mg .
2) Metallic bond in Mg is stronger than the metallic bond in Na
3) Melting and boiling points of Mg are greater than that of Ca
4) Mg and Ca are most abundant elements among the alkaline earth metals

The correct statements are

1) III, IV
2)I, II, IV
2) II, IV
3) I, IV
73. Bond length of $\mathbf{H}-\mathrm{I}$ is $1.6 \mathrm{~A}^{0}$ and its observed dipole moment is $\mathbf{0 . 3 8 D}$. Then the percentage of ionic character nearly
1)5
2) 8
3) 10
4) 15
74. The ionic radii (in $\mathrm{A}^{\mathbf{0}}$) of $\mathbf{N}^{\mathbf{3 -}}, \mathbf{O}^{\mathbf{2 -}}$ and F^{-}are respectively
1) $1.36,1.4$ and 1.71
2) $1.36,1.71$ and 1.4
3) $1.71,1.4$ and 1.36
4) $1.71,1.36$ and 1.4
75. The method of Zone refining of metals is based on the principle of
1) Greater mobility of the pure metal than that of impurity
2) Higher melting point of the impurity than that of the pure metal
3) Greater conductivity of solid metal than that of impurity
4) Greater solubility of the impurity in the molten statethan in solid state of metal
76. EAN (effective atomic number) are not equal in which of the following pair
1) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
2) $\left[\mathrm{Ni}(\mathrm{en})_{2}\right],\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
3) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
4) $\left[\mathrm{Ni}(\mathrm{en})_{2}\right],\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}$
77. Hexaaquo titanium (111) chloride is represented as
1) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
2) $\left[\mathrm{TiCl}_{3}\right] 6 \mathrm{H}_{2} \mathrm{O}$
3) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
4) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$
78. Which of the following electrolytes is most effective in the coagulation of gold solution?
1) NaNO_{3}
2) $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
3) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
4) MgCl_{2}
79. A aqueous solution freezes at $\mathbf{- 1 . 8 6}{ }^{0} \mathrm{c},\left(\mathrm{K}_{\mathrm{f}}=\mathbf{1 . 8 6}, \mathrm{K}_{\mathrm{b}}=\mathbf{0 . 5 1 2}\right)$ what is the elevation in boiling point?
1) 0.186
2) 0.512
3) 0.86
4) 0.0512
80. A metal crystllizes in a bcc lattice. Its unit cell edge length is about $3 \mathrm{~A}^{0}$ and its molar mass is about $60 \mathrm{~g} / \mathrm{mol}$. The density of the metal is
1) 7.4
2) 6.2
3) 9.3
4) 12.4
81. The position of Br in the compound $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CHC}(\mathrm{Br})\left(\mathrm{CH}_{3}\right)_{2}$ is
1) Allyl
2) Aryl
3) Vinyl
4) Secondary
82. The most stable carbocation is
1)

2)

3)

83. $\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{X}$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl} \xrightarrow{\text { alc } \mathrm{KOH}} Y$
$X \xrightarrow{Z} Y$
In this reaction the reagent ' Z ' is

1) $\mathrm{Con}_{2} \mathrm{SO}_{4}$
2) LiAlH_{4}
3) $\mathrm{Pd}+\mathrm{BaSO}_{4}$
4) $(\mathrm{Zn}-\mathrm{Hg})+\mathrm{ConHCl}$
84. $\mathrm{C}_{2} \mathrm{H}_{6} \xrightarrow{\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mn}} X \xrightarrow{\mathrm{PCl}_{5}} Y \xrightarrow[\text { Anh.AlCl }]{\mathrm{C}_{6} \mathrm{H}_{6}} Z$. Identify $\mathbf{X , Y , Z}$.
1) $\mathrm{CO}_{2}, \mathrm{COCl}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
2) $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COCl}$
3) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COCl}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
4) $\mathrm{HCOOH}, \mathrm{HCOCl}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
85. In $\mathrm{PO}_{4}{ }^{-3}$ ion the formal charge on each oxygen atom and $\mathrm{P}-\mathrm{O}$ bond order respectively are
1) $-0.75,1.25$
2) $-3,1.25$
3) $-0.75,1$
4) $-0.75,0.6$
86. The statements regarding hydrides of VI-A group elements are
i) The order of volatility $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}$
ii) The order of boiling point $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}$
iii) The order of bond angles $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$

The correct combination is

1) Only (i) is correct
2) (ii) and (iii) are correct
3) (i) and (iii) are correct
4) All are correct
87. The halogen having greenish yellow gas reacts with hot and concentrated NaOHsolution and give products. The oxidation state of that halogen changes from
1) 0 to -1
2) 0 to +5
3) -1 to +1
4) 0 to -1 and +5 states
88. The distribution of electrons in metal ion in $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ in splitted d- orbitals is
1) $t^{5}{ }_{2 g} e_{g}^{0}$
2) $t^{3}{ }_{2 g} e g^{2}$
3) $t_{2 g}{ }^{2} e_{g}{ }^{3}$
4) $t_{2 g}{ }^{4} e_{g}{ }^{1}$
89. Number of σ bonds present in meta borate ion and borazole are
1) 14,15
2) 14,12
3) 18,12
4) 18,15
90. Name of structure of silicate in which three oxygen atoms of $\left[\mathrm{SiO}_{4}\right]^{4-}$ are shared is
1) Pyro silicate
2) Sheet silicate
3) Linear chain silicate
4) Three dimensional silicate

BIOLOGY

91. One of the following serve as quick referral systems in taxonomical studies.
1) Flora
2) Manuals
3) Herbaria
4) Monographs
92. Study the flow chart. Name the hormones labeled as A, B, C, D at each stage Choose the correct option
