
	S R I G A Y	ATRI EDUCATION	AL INSTITUTIONS	- AP & TS			
43.	A transistor is used as an amplifier in CB mode with a load resistance of $5k\Omega$ the current gain of amplifier is 0.98 and the input resistance is 70Ω , the voltage gain and power gain						
	respectively are	and the input resist	tance is 7022, the volta	age gain and power gain			
	1) 70, 68.6	2)80, 75.6	3) 60, 66.6	4) 90, 96.6			
44.	If A and B two input	ts in AND gate, then A	ND gate has an output	of 1 when the values of A			
	and B are						
	1) A=0, B=0	, ,	3) A=1, B=0	, ,			
45.	Out of the following wave?	options which one can	be used to produce a pr	ropagating electromagnetic			
	1) A charge moving at constant velocity		2) A stationary charge				
	3) A charge less particle		4) An accelerating charge				
	CHEMISTRY						
46.	Specific volume of cy			use radius and length $7A^0$			
TU .	Specific volume of cylindrical virus particles is $6.02 \times 10^{-2} cc/g$ whose radius and length 7. and $10A^0$, If $N_A = 6.02 \times 10^{23}$ find molecular weight of virus						
			3) $15.4 \times 10^4 \ kg \ mol$	4) 3.08×10^4 kg/mol			
47.				$\rightarrow 4$ transition is He^+ ion?			
4/.	1) $4 \rightarrow 2$	2) $2 \rightarrow 4$					
48.	,		H_2 confined in a bulb o				
	1) 25.184 atm		-	4) 15.210 atm			
49.		g exhibits weakest inte					
	1) NH_{3}	2) <i>HCl</i>	3) <i>He</i>	4) H_2O			
50.	If $x_1, x_2 \& x_3$ are enthalpies of H-H, O=O and O-H bonds respectively and x_4 is the enthalpy of						
	-		d enthalpy of combustion				
	1) $x_1 + \frac{x_2}{2} - 2x_3 + x_4$	2) $x_1 + \frac{x_2}{2} - 2x_3 - x_4$	3) $x_1 + \frac{x_2}{2} - x_3 - x_4$	4) $2x_3 - x_1 - \frac{x_2}{2} - x_4$			
51.	Which of the followin	g on the addition will	cause deep red colour to	o disappear.			
	$\operatorname{Fe}_{(aq)}^{+3} + \operatorname{SCN}_{(aq)}^{-} =$	$\Rightarrow \left[\text{Fe}(\text{SCN}) \right]^{+2}$					
	(aq) (aq) Pale yellow Colour less	$L \qquad () \Box(aq)$ Deep red					
	a) KSCN	b) HgC ℓ_2	c) $H_2C_2O_4$				
	1) a, b & c	2) a & b only	3) b & c only	4) a & c only			
52.		g are not state functio					
	I) q+w 1) II,III&IV	II) q 2) I,II&III	III) w 3) II&III	IV) H-Ts 4) I&IV			
53.		, ,	,	s are mixed and the volume			
33.	5	2	•	s are mixed and the volume			
	—	• Then pH of the resu	-				
54	1) 1 Management in the early of	2) 2	3) 3	4) 8			
54.		netal which is liquid at energy and weak metal					
	2) Low ionization ener						
	3) high atomic weight		4) high vapour pressure	e			
55.	Which substance doe	s not speed up decomp					
_	1) glycerol	2) Pt	3) gold	4) <i>MnO</i> ₂			
56.	For alkali metals, which one of the following trends is incorrect						
1) Hydration enthalpy : $Li^+ > Na^+ > K^+ > Rb^+$ 2) Ionisation energy : $Li > N$ 3) Density : $Li < Na < K$ 4) Atomic size : $Li < Na < K$							
	3) Density: L1 < INa	< A < KU	4) Atomic size : $Li < N$	na < n < n 0			

			AL INSTITUTIONS	- AP & TS		
57.	Which one of the following statements about the zeolite is false					
	 They are used as cation exchangers They have open structure which enables them to take up small molecules 					
	3) Zeolites are alumina silicates having three dimensional network					
	4) Some of the SiO ₄ ⁻⁴ units are replaced by $A\ell O_4^{-5}$ and $A\ell O_6^{-9}$ ions in Zeolits.					
58.	The chemical entities present in thermosphere of atmosphere are					
••••	1) O^{+2}, O^+, NO^+		3) N_2, O_2, CO_2, H_2O	4) Q_2, Q_2^+, Q_2^-		
59.	<i>, , , ,</i>	show paramagnetism?	-, -, 2, - 2, 2, 2	, , , , , , , , , , , , , , , , , , , ,		
0,7.	1) ClO_2	2) SO_2	3) CO_{2}	4) SiO_2		
60.	, 2	O_3^{-2} ion between C-O is	, 2	,		
00.	1) Zero	2) 0.88	3) 1.33	4) 2		
61.	·	/	/	,		
010	Which is the best description of behaviour of bromine in the reaction given below? $H_2O + Br_2 \rightarrow HOBr + HBr$					
	1) Proton acceptor onl		2) both oxidized and re	educed		
	3) Oxidized only	-	4) reduced only			
62.	One mole of CaOCl	2 is dissolved in water	· & excess of KI addee	d. Then hypo $(Na_2S_2O_3)$		
		h the oxidised product (
	1) 1 mole	2) 2 moles	3) 1.5 moles	4) 2.5 moles		
63.			k N have the percenta	age 40, 13.33 & 46.67. Its		
	empirical formula ma	•				
	1) $C_2 H_7 N$	_ , _		4) CH_5N		
64.		e a solution of benzene				
	1) Sublimation	2) Filtration	3) Distillation	4) Crystallization		
65.	The relative extent to is	which the various orb	itals penetrate the elect	ron clouds of other orbitals		
		2) $f > d > n > s$	3) $p > s > d > f$	4) $d > f > n > s$		
66.	· •	· •	· 1	104 pm. The density of the		
00.		³ . The molar mass of th	-	for plus the density of the		
	1) 30 g <i>mol</i> ⁻			4) 40 g <i>mol</i> ⁻		
67.	, 0	, U	, 0	n of Hg. A non-volatile and		
	non-electrolyte solid	weighing 2.175 g is add	led to 39.08 g of benzer	ne. The vapour pressure of		
	the solution is 600 m of Hg. What is the molecular weight of solid substance?					
(0	1) 49.50	2) 59.6	3) 69.5	4) 79.8		
68.	1) 2 and 2	2) 1 and 2	nd molecularity values 1 3) 1 and 1	4) 2 and 1		
69.	Consider the half-cel	,	<i>5)</i> 1 and 1	1) 2 and 1		
	$Mn^{+2} + 2e^- \rightarrow Mn$, E					
	$Mn^{+2} \rightarrow Mn^{+3} + e^{-}, E$	$^{0} = -1.51V$				
	The E^0 for the react	$\int_{\partial \mathbf{m}} 2M \mathbf{m}^{+2} \rightarrow M \mathbf{m} + 2M \mathbf{m}^{+1}$	³ and possibility of the	forward reaction are		
	1) -2.69V and no	$OII SMIN \rightarrow MIN + 2MIN$	2) -4.18V and yes	forward reaction are		
	3) $+0.33$ V and yes		4) $+2.69V$ and no			
70.	· ·	ction, the half-life perio	· ·			
	1) Initial concentratio		2) cube root of initial c			
	3) first power of final		4) square root of final concentration			
71.	-	A liquid aerosol is a colloidal system of		2) a liquid dispersed in a sec		
	 a liquid dispersed i a gas dispersed in a 		2) a liquid dispersed in4) a solid dispersed in a	•		
72.	Thomas slag is	i inquitu		u zuo		
•	C	2) $C_a(PO)$	3) M_n SiO	A) CaCO		
	1) $CaSiO_3$	2) $Ca_{3}(PO_{4})_{2}$	3) <i>MnSiO</i> ₃	4) <i>CaCO</i> ₃		

	SRIGAYATRI EDUCATIO	ONAL INSTITUTIONS - AP&TS			
73.	Which of the following after burning at room temperature gives gaseous oxide?				
	1) H	2) Na			
	3) S	4) He			
74.	Which noble gas is most soluble in water				
	1) He 2) Ar	3) Ne 4) Xe			
75.	Which one of the following compounds is not colored?				
	1) $Na_2[CuCl_4]$	2) $Na_2[CdCl_4]$			
	3) $K_4 \left[Fe(CN)_6 \right]$	4) $K_3 \left[Fe(CN)_6 \right]$			
76.	Which of the following is more basic in nature				
	1) $La(OH)_3$	2) $Gd(OH)_3$			
	3) $Pm(OH)_3$	4) Lu (OH) ₃			
77.	In the complex $Fe(CO)_x$, the value of x is and it is				
	1) 3, octahedral	2) 4, tetrahedral			
	3) 5, trigonal pyramidal	4) 6, square pyramidal			
78.	A magnetic moment 1.73 B.M will be shown by one among the following				
	1) $\left[Ni(CN)_{4}\right]^{-2}$	2) <i>TiCl</i> ₄			
	$3) \left[COCl_6 \right]^{-4}$	4) $\left[Cu(NH_3)_4\right]^{+2}$			
79.	Lysine is least soluble in water in the P^H range				
	1) 3 to 4 2) 5 to 6	3) 6 to 7 4) 8 to 9			
80.	Which one of the following is used to make non-stick cookware?				
	1) PVC	2) Polystyrene			
	3) Polyethylene terephthalate	4) poly tetra fluoro ethene			
81.	The ligands in anti-cancer drug cisplatin are				
	1) <i>NH</i> ₃ , <i>Cl</i>	2) NH_3 , H_2O			
	3) Cl , H_2O	4) NO, <i>Cl</i>			
82.	Which plastic is obtained from <i>CHCl</i> ₃ in the following reaction?				
	$CHCl_3 \xrightarrow{HF} X \xrightarrow{800^0 C} Y$	$\xrightarrow{polymerisation} \rightarrow Plastic$			
	1) Bakelite 2) Polythene	3) Teflon4) Perspex			
83.					
	CH_3				
	$\underset{(major)}{B} \leftarrow \underbrace{\overset{CH_3CH_2ONa}{(CH_3CH_2OH)}} CH_3 - C - Br \xrightarrow{CH_3CH_2OH} A_{(major)}$				
		(114907)			

$$\begin{array}{c} CH_{3} \\ (H_{3} - C - OCH_{2}CH_{3} \text{ in both cases} \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ in both cases} \\ (CH_{3} - C - CH_{2} \text{ in both cases} \\ (CH_{3} - C - CH_{2} - CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C \\ (CH_{3} - C - OCH_{2}CH_{3} \text{ and } CH_{3} - C - OCH_{3} - C - OCH_{3} - C - OCH_{3} + C$$

- 84. Which of the following exhibits linkage isomerism1) $[Co(NH_3)_5 Br]SO_4$ 2) $[Co(NH_3)_5 NO_2]C\ell_2$ 3) $[Cr(H_2O)_6]C\ell_3$ 4) $[Co(NH_3)_6][Cr(CN)_6]$
- 85. Which of the following compounds has the most acidic nature?

- 86. $CH_3CH_2COOH \xrightarrow{SOCl_2} B \xrightarrow{NH_3} C \xrightarrow{KOH} D$ the structure of **D** is 1) $CH_3CH_2NHCH_3$ 2) $CH_3CH_2NH_2$ 3) $CH_3CH_2CH_2NH_2$ 4) $CH_3CH_2CONH_2$
- 87. Organic compound A of the molecular formula $C_5H_{10}Cl_2$ is hydrolysed to compound B $C_5H_{10}O$, which gives an oxime with hydroxylamine and yellow ppt with a mixture of iodine and sodium hydroxide. The compound A should be 1) $CH_3CH_2CCl_2CH_2CH_3$ 2) $CH_3CH_2CCl_2CH_3$

- 1) CH_3CH_2CHO 2) HCHO3) CH_3CHO 4) CH_3COCH_3 89. Which of the following is more basic than aniline?
- 1) p-nitro aniline 2) benzyl amine 3) Di phenyl amine 4) Tri phenyl amine 90. Which of the following will be most stable diazomium salt $RN_2^+X^-$?

1)
$$C_6H_5N_2^+X^-$$
 2) $CH_3N_2^+X^-$ 3) $CH_3CH_2N_2^+X^-$ 4) $C_6H_5CH_2N_2^+X^-$

BIOLOGY

- 91. Two organisms belongs to same class but not in the same family belongs to same _____
 - 1) genus2) species3) variety4) order