SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP&TS

SRIGAYATRI EDUCATIONAL INSTITUTIONS

INDIA

SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP&TS 13. In a room, where the temperature is 30°C, a body cools from 61°C to 59°C in 4 min. The time taken by the body to cool from 51°C to 49°C will be 1) 4 min 2) 6 min 3) 5 min 4) 8 min Which of the following is true in the case of an adiabatic process where $\gamma = \frac{C_P}{c}$ 14. 1) $P^{1-\gamma}.T^{\gamma} = constant$ 2) $P^{\gamma}.T^{1-\gamma} = constant$ 3) $PT^{\gamma} = constant$ 4) $P^{\gamma}T = constant$ Work done to increase the temperature of 1 mole of an ideal gas by 30°C, if it is expanding 15. under the condition $V \alpha T^{2/3}$ is $(R = 8.314 J / mole / {^\circ}K)$ 1) 116.2 J 2) 136.2J 3) 166.2 J 4) 186.2 J Sum of magnitude of two forces is 25N. The resultant of these forces is normal to the smaller 16. force and has a magnitude of 10N. Then the forces are 4) 20N, 5N 1) 14.5N, 10.5N 2) 16N, 9N 3) 13N, 12N An electric field is expressed as $\vec{E} = 2\hat{i} + 3\hat{j}$. The potential difference $(V_A - V_B)$ between two 17. points A and B whose positions vectors are given by $r_A = \hat{i} + 2\hat{j}$ and $r_B = 2\hat{i} + \hat{j} + 3\hat{k}$ is 4) 3 V 1) -1 V 3) 2 V 2) 1 V The velocity and time graph for a particle moving line is shown, then the average velocity 18. between t=4s and t=6s is

4) 9.5 m/s

1) 10.5 m/s 2) 12.5 m/s

19. A rod of mass 2kg and length 2m is rotating about its one end O with an angular velocity $\omega = 4$ rad/s. Find angular momentum of the rod about the axis rotation

- 20. A disc of moment of inertia I_1 is rotating freely with angular velocity ω_1 when a second, non-rotating disc with moment of inertia I_2 is dropped on it gently the two then rotate as a unit. Then the total angular speed is :
 - (1) $\frac{l_1\omega_1}{l_2}$ (2) $\frac{l_2\omega_1}{l_1}$ (3) $\frac{l_1\omega_1}{l_2+l_1}$ (4) $\frac{(l_1+l_2)\omega_1}{l_2}$

21. A body of mass 10kg is acted upon by a given equation $F = 3t^2 - 30N$. The initial velocity of the body is 10m/s. The velocity of the body after 5s is 1) 4.5 m/s 2) 6 m/s 3) 7.5 m/s 4) 5 m/s

22. Two particles of equal mass move in a circle of radius r under the action of their mutual gravitational attraction. If the mass of each particle is M, the speed of each particle is

1)
$$\sqrt{\frac{GM}{r}}$$
 2) $\sqrt{\frac{GM}{2r}}$ 3) $\sqrt{\frac{GM}{4r}}$ 4) $\sqrt{\frac{2GM}{r}}$

- 23. A certain organ pipe, three successive resonance frequencies are observed at 425, 595 and
765Hz respectively. The length of the pipe is (velocity of sound 340m/s)1) 2m2) 1.5m3) 1m4) 0.5m
- 24. Two stationary sources A and B are sounding notes of frequency 680 Hz. A listener moves from A to B with a constant speed 'u'. If the speed of sound in air is 340 m/s. What must be the value of 'u' so that he hears 5 beats per second.
 1) 1.0 m/s
 2) 1.25 m/s
 3) 1.5 m/s
 4) 1.75 m/s
- 25. Two point charges $+8\mu$ C and $+12\mu$ C repel each other with a force of 48N. When an additional charge of -10μ C is given to each of these charges then the new force is (the distance between charges are same)

1) 24N (Repulsive)2) 24N (Attractive)3) 2N (Repulsive)4) 2N (Attractive)26. The equivalent capacitance between P and O is

1) 10μF
 2) 5μF
 3) 20μF
 4) 15μF
 27. Four identical wires each having resistance R are connected as shown equivalent resistance between A and B is

1) R/42) R/23) R4) 4R28. Figure shows a colour coded resistor what is the resistance of the resistor

29. A magnetized straight wire has a magnetic moment M. If it is bent in to a semi circular arc, its magnetic moment becomes

1) $\frac{M}{2\pi}$ 2) $\frac{2M}{\pi}$ 3) $\frac{2\pi M}{3}$ 4) $\frac{2\pi}{M}$

30. Two straight long parallel conductors 10cm apart, carry equal currents of magnitude 3A in the same direction. Then the magnetic induction at a point midway between them is

1)
$$2 \times 10^{-5}T$$
 2) $3 \times 10^{-5}T$ 3) zero 4) $4 \times 10^{-5}T$

31. The magnetic flux linked with a closed coil is increased to a maximum value in 2s and its relation with time is $\phi = at^2 + bt + c$ then relation between a, b and c is

1)
$$a = -b$$
 2) $a = -\frac{b}{4}$ 3) $a + b = c$ 4) $ac = \frac{b}{2}$

32. The number of turns in primary and secondary coils of a transformer is 50 and 200. If the current in the primary coil is 4A, then the current in the secondary coil is

- 10	SRIGATATRI EDUCATIONAL INSTITUTIONS - AP&IS			
42.	The distance between an object and its real image formed by a lens is 'D'. If the magnification is 'm', the focal length of the lens is			
	1) $\left\lceil \frac{m-1}{m} \right\rceil D$ 2) $\frac{mD}{m+1}$	(m-1)D	$_{A}$ mD	
	$\begin{array}{c} 1 \\ \hline m \end{array} \right] \begin{array}{c} D \\ \hline m + 1 \end{array}$	m^2	$(m+1)^2$	
43.	When an object is placed between two plane mirrors, then the number of images formed is			
	1) 2 2) 4	3) 8	4) infinite	
44.	The monochromatic light beams of intensities of bright and dark parts of the re	-	e interfering. The ratio of	
	1) 16/9 2) 49/1	3) $7/1$	4) 4/3	
45.	In YDSE for producing interference pattern	,	,	
	a) wavelength b) distance between the two slits			
	c) distance between screen and the slits			
	1) a only 2) a and b	, ,	4) a, b and d	
	CHEMISTRY			
46.	The maximum number of electrons that can	be present in an orbita	l with $S = +\frac{1}{2}$ and $l = 2$	
	1) 1 2) 3	3) 5	4) 7	
47.	Which statement is wrong about Bohr's theory			
	 Orbit is a three dimensional area where probability of finding electron is maximum Orbit is a two dimensional track on which electron moves 			
	3) Atom has definite boundary			
	4) Energies and angular momentum of orbits are quantized			
48.	Give the name of the inert gas atom in which the total number of d-electrons is equal to the			
	difference in numbers of total p & s – electrons			
40	1) Ar 2) Kr	3) Xe	4) Rn	
49.	In which of the following pairs the two speci			
	1) CO_3^{-2} and NO_3^{-} 2) PCl_4^+ and $SiCl_4$			
50.	What is the dominant intermolecular force or bond that must be overcome in converting liquid CH_3OH to a gas?			
	1) Covalent bonds	2) Dipole-dipole interaction		
	3) London dispersion forces	4) Hydrogen bonding		
51.	Volume occupied by one molecule of water (22 2	
	1) $3.0 \times 10^{-23} cm^3$ 2) $5.5 \times 10^{-23} cm^3$		4) $9.0 \times 10^{-23} cm^3$	
52.	When N_2 is converted into NH_3 , the equival			
	1) 1.67 2) 2.67	3) 3.67	4) 4.67	
53.	Which is not a property of H_2O_2			
	1) Conc. H_2O_2 solution is acidic in nature			
		excellent solvent for electrolysis 4) H_2O_2 is a diamagnetic		
54.	Read the following statements			
	I) Cs^+ is highly hydrated			
	II) Li has highest melting point among Li, Na, K & Rb			
	III) In alkali metals only Li forms nitride The correct statements are			
	1) I & II 2) II & III	3) I & III	4) I, II & III	
55.	Solution of azeotropic nitric acid contain	c) i w iii	., .,	
	1) 32% HNO_3 , 68% H_2O by mass	2) 50% HNO_3 , 50% H_2O by mass		
	3) 68% HNO_3 , 32% H_2O by mass	4) 30% HNO_3 , 70% H_2O by mass		
	-,,,,,,,,,,	.,,,	2	

SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP&TS