NEET TOT GT-3

Max. Marks: $\mathbf{7 2 0}$ M

PHYSICS

1. The S.I unit of moment of inertia and dimensional formula is
1) $\mathrm{kg} / m^{2}, M^{1} L^{-2} T^{0}$
2) $\mathrm{kgm}^{2}, M^{1} L^{2} T^{0}$
3) $N m^{2}, M L^{3} T^{-2}$
4) $N / m^{2}, M^{1} L^{-1} T^{-2}$
2. Two solid spheres of radii R and $2 R$ are made up of the same material. If they are placed in contact with each other, the gravitational force of attraction between them is proportional to
1) R^{4}
2) R^{2}
3) $R^{1 / 2}$
4) $R^{3 / 2}$
3. A body executing S.H.M has a maximum velocity of $1 \mathrm{~m} / \mathrm{s}$ and a maximum acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. Its amplitude in meters is
1) 1
2) 0.75
3) 0.5
4) 0.25
4. The pressure inside two soap bubbles are 1.01 and 1.02 atm respectively. The ratio of their respective volumes is
1) 2
2) 4
3) 8
4) 16
5. Sand is being dropped on a conveyer belt at the rate of $M \mathrm{~kg} / \mathrm{s}$. The force necessary to keep the belt moving with a constant velocity of $\mathrm{V} \mathbf{~ m} / \mathrm{s}$ will be (in newton)
1) $\frac{M V}{2}$
2) zero
3) MV
4) 2 MV
6. Two balls of same mass each ' m ' are moving with same velocities ' v ' on a smooth surface as shown. If all collisions between the mass and with the wall are perfectly elastic the possible number of collisions between the bodies and wall together is

1) 1
2) 2
3) Infinity
4) 3
7. A body of mass 6 kg under a force which causes displacement in it given by $S=\frac{t^{2}}{4} m$, Where ' t ' is time. The work done by the force in $\mathbf{2}$ seconds is
1) 3 J
2) 9 J
3) 6 J
4) 12 J
8. A system consists of two identical particles one particle is at rest and the other particle has an acceleration ' a '. The centre of mass of the system has an acceleration of
1) $2 a$
2) a
3) $a / 2$
4) $a / 4$
9. A thin hallow sphere of mass ' m ' is completely filled with a liquid of mass ' m '. When the sphere rolls with a velocity ' \mathbf{v} ', kinetic energy of the system is (neglect friction)
1) $\frac{1}{2} m v^{2}$
2) $\frac{4}{3} m v^{2}$
3) $\frac{4}{5} m v^{2}$
4) $m v^{2}$
10. A monoatomic and a diatomic gas molecules have how many degree of freedom respectively
1) 3,4
2) 4,3
3) 5,3
4) 3,5
11. The bulk modulus of a spherical object is ' B '. If it is subjected to uniform pressure ' \mathbf{P} ', the fractional decrease in radius is
1) $\frac{P}{B}$
2) $\frac{P}{3 B}$
3) $\frac{B}{3 P}$
4) $\frac{3 P}{B}$
12. 2 kg of ice at $-\mathbf{2} 0^{\circ} \mathbf{C}$ is mixed with 5 kg of water at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$. Final mass of water formed is
1) 6 kg
2) 7 kg
3) 4 kg
4) 2 kg
13. In a room, where the temperature is $30^{\circ} \mathrm{C}$, a body cools from $61^{\circ} \mathrm{C}$ to $59^{\circ} \mathrm{C}$ in 4 min . The time taken by the body to cool from $51^{\circ} \mathrm{C}$ to $49^{\circ} \mathrm{C}$ will be
1) 4 min
2) 6 min
3) 5 min
4) 8 min
14. Which of the following is true in the case of an adiabatic process where $\gamma=\frac{C_{P}}{C_{V}}$
1) $P^{1-\gamma} \cdot T^{\gamma}=$ constant
2) $P^{\gamma} \cdot T^{1-\gamma}=$ constant
3) $P T^{\gamma}=$ constant
4) $P^{\gamma} T=$ constant
15. Work done to increase the temperature of 1 mole of an ideal gas by $30^{\circ} \mathrm{C}$, if it is expanding under the condition $V \alpha T^{2 / 3}$ is $\left(R=8.314 \mathrm{~J} /\right.$ mole $\left./{ }^{\circ} \mathrm{K}\right)$
1) 116.2 J
2) 136.2 J
3) 166.2 J
4) 186.2 J
16. Sum of magnitude of two forces is 25 N . The resultant of these forces is normal to the smaller force and has a magnitude of 10 N . Then the forces are
1) $14.5 \mathrm{~N}, 10.5 \mathrm{~N}$
2) $16 \mathrm{~N}, 9 \mathrm{~N}$
3) $13 \mathrm{~N}, 12 \mathrm{~N}$
4) $20 \mathrm{~N}, 5 \mathrm{~N}$
17. An electric field is expressed as $\vec{E}=2 \hat{i}+3 \hat{j}$. The potential difference $\left(V_{A}-V_{B}\right)$ between two points A and B whose positions vectors are given by $r_{A}=\hat{i}+2 \hat{j}$ and $r_{B}=2 \hat{i}+\hat{j}+3 \hat{k}$ is
1) -1 V
2) 1 V
3) 2 V
4) 3 V
18. The velocity and time graph for a particle moving line is shown, then the average velocity between $t=4 \mathrm{~s}$ and $t=6 \mathrm{~s}$ is

1) $10.5 \mathrm{~m} / \mathrm{s}$
2) $12.5 \mathrm{~m} / \mathrm{s}$
3) $7.5 \mathrm{~m} / \mathrm{s}$
4) $9.5 \mathrm{~m} / \mathrm{s}$
19. A rod of mass 2 kg and length 2 m is rotating about its one end O with an angular velocity $\omega=4 \mathrm{rad} / \mathrm{s}$. Find angular momentum of the rod about the axis rotation

1) $\frac{42}{3} \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
2) $\frac{32}{3} \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
3) $\frac{22}{3} \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
4) $\frac{10}{3} \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
20. A disc of moment of inertia I_{1} is rotating freely with angular velocity ω_{1} when a second, nonrotating disc with moment of inertia I_{2} is dropped on it gently the two then rotate as a unit. Then the total angular speed is :
(1) $\frac{I_{1} \omega_{1}}{I_{2}}$
(2) $\frac{I_{2} \omega_{1}}{I_{1}}$
(3) $\frac{\mathrm{I}_{1} \omega_{1}}{\mathrm{I}_{2}+\mathrm{I}_{1}}$
(4) $\frac{\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \omega_{1}}{\mathrm{I}_{2}}$
21. A body of mass 10 kg is acted upon by a given equation $F=3 t^{2}-30 N$. The initial velocity of the body is $10 \mathrm{~m} / \mathrm{s}$. The velocity of the body after 5 s is
1) $4.5 \mathrm{~m} / \mathrm{s}$
2) $6 \mathrm{~m} / \mathrm{s}$
3) $7.5 \mathrm{~m} / \mathrm{s}$
4) $5 \mathrm{~m} / \mathrm{s}$
22. Two particles of equal mass move in a circle of radius r under the action of their mutual gravitational attraction. If the mass of each particle is M, the speed of each particle is
1) $\sqrt{\frac{G M}{r}}$
2) $\sqrt{\frac{G M}{2 r}}$
3) $\sqrt{\frac{G M}{4 r}}$
4) $\sqrt{\frac{2 G M}{r}}$
23. A certain organ pipe, three successive resonance frequencies are observed at 425,595 and 765 Hz respectively. The length of the pipe is (velocity of sound $340 \mathrm{~m} / \mathrm{s}$)
1) 2 m
2) 1.5 m
3) 1 m
4) 0.5 m
24. Two stationary sources A and B are sounding notes of frequency 680 Hz . A listener moves from A to B with a constant speed ' u '. If the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$. What must be the value of ' u ' so that he hears 5 beats per second.
1) $1.0 \mathrm{~m} / \mathrm{s}$
2) $1.25 \mathrm{~m} / \mathrm{s}$
3) $1.5 \mathrm{~m} / \mathrm{s}$
4) $1.75 \mathrm{~m} / \mathrm{s}$
25. Two point charges $+8 \mu \mathrm{C}$ and $+12 \mu \mathrm{C}$ repel each other with a force of 48 N . When an additional charge of $-10 \mu \mathrm{C}$ is given to each of these charges then the new force is (the distance between charges are same)
1) 24 N (Repulsive)
2) 24 N (Attractive)
3) 2 N (Repulsive)
4) 2 N (Attractive)
26. The equivalent capacitance between P and Q is

1) $10 \mu \mathrm{~F}$
2) $5 \mu \mathrm{~F}$
3) $20 \mu \mathrm{~F}$
4) $15 \mu \mathrm{~F}$
27. Four identical wires each having resistance R are connected as shown equivalent resistance between A and B is

1) $R / 4$
2) $R / 2$
3) R
4) $4 R$
28. Figure shows a colour coded resistor what is the resistance of the resistor

1) $420 \Omega \pm 5 \%$
2) $340 \Omega \pm 10 \%$
3) $270 \Omega \pm 20 \%$
4) $240 \Omega \pm 10 \%$
29. A magnetized straight wire has a magnetic moment M. If it is bent in to a semi circular arc, its magnetic moment becomes
1) $\frac{M}{2 \pi}$
2) $\frac{2 M}{\pi}$
3) $\frac{2 \pi M}{3}$
4) $\frac{2 \pi}{M}$
30. Two straight long parallel conductors 10 cm apart, carry equal currents of magnitude 3 A in the same direction. Then the magnetic induction at a point midway between them is
1) $2 \times 10^{-5} \mathrm{~T}$
2) $3 \times 10^{-5} \mathrm{~T}$
3) zero
4) $4 \times 10^{-5} \mathrm{~T}$
31. The magnetic flux linked with a closed coil is increased to a maximum value in 2 s and its relation with time is $\phi=a t^{2}+b t+c$ then relation between \mathbf{a}, \mathbf{b} and \mathbf{c} is
1) $a=-b$
2) $a=-\frac{b}{4}$
3) $a+b=c$
4) $a c=\frac{b}{2}$
32. The number of turns in primary and secondary coils of a transformer is 50 and 200 . If the current in the primary coil is 4 A , then the current in the secondary coil is
1) 1 A
2) 2 A
3) 4 A
4) 5 A
33. During the propagation of electromagnetic waves in a medium
1) Electric energy density is double of the magnetic energy density
2) Electric energy density is half of the magnetic energy density
3) Electric energy density is equal to the magnetic energy density
4) Both electric and magnetic energy densities are zero
34. The energy that should be added to an electron to reduce its de-Broglie wavelength from 1 nm to 0.5 nm is
1) 4 times to the initial energy
2) equal to the initial energy
3) 2 times to the initial energy
4) 3 times to the initial energy
35. A galvanometer with a shunt in parallel is used in series in a circuit. Then it is called
1) ammeter
2) voltmeter
3) ohmmeter
4) multimeter
36. The stopping potentials were v_{1} and v_{2} volts with the incident light of wavelength λ and $\frac{\lambda}{2}$ respectively then
1) $\mathrm{v}_{1}<\mathrm{v}_{2}<2 \mathrm{v}_{1}$
2) $v_{2}>2 v_{1}$
3) $v_{2}=2 v_{1}$
4) $v_{2}<v_{1}$
37. In the lowest energy level of hydrogen atom, electron has the angular momentum
1) $\frac{\pi}{h}$
2) $\frac{h}{\pi}$
3) $\frac{h}{2 \pi}$
4) $\frac{2 \pi}{h}$
38. Which of the following is emitted when ${ }_{94} P u^{239}$ decay in to ${ }_{92} U^{235}$
1) Gamma ray
2) Neutron
3) Electron
4) Alpha particle
39. In the following common emitter circuit if $\beta=100, \mathrm{~V}_{\mathrm{CE}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=$ Neglegible, $\mathrm{R}_{\mathrm{C}}=2 \mathrm{k} \Omega$, then $\mathrm{I}_{\mathrm{B}}=$?

1) 0.01 mA
2) 0.04 mA
3) 0.02 mA
4) 0.03 mA
40. In a n-type semiconductor, the fermi energy level lies
1) In the forbidden energy gap nearer to the conduction band
2) In the forbidden energy gap nearer to the valence band
3) In the middle of forbidden energy gap
4) Outside the forbidden energy gap
41. The expression of Y in following circuit is

1) ABCD
2) $\mathrm{A}+\mathrm{BCD}$
3) $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$
4) $A B+C D$
42. The distance between an object and its real image formed by a lens is ' D '. If the magnification is ' m ', the focal length of the lens is
1) $\left[\frac{m-1}{m}\right] D$
2) $\frac{m D}{m+1}$
3) $\frac{(m-1) D}{m^{2}}$
4) $\frac{m D}{(m+1)^{2}}$
43. When an object is placed between two plane mirrors, then the number of images formed is
1) 2
2) 4
3) 8
4) infinite
44. The monochromatic light beams of intensity 16 and 9 units are interfering. The ratio of intensities of bright and dark parts of the resultant pattern
1) $16 / 9$
2) $49 / 1$
3) $7 / 1$
4) $4 / 3$
45. In YDSE for producing interference pattern, the fringe width depends on
a) wavelength
b) distance between the two slits
c) distance between screen and the slits
d) distance between source and the slits
1) a only
2) a and b
3) a, b and c
4) a, b and d

CHEMISTRY

46. The maximum number of electrons that can be present in an orbital with $S=+\frac{1}{2}$ and $l=2$
1) 1
2) 3
3) 5
4) 7
47. Which statement is wrong about Bohr's theory
1) Orbit is a three dimensional area where probability of finding electron is maximum
2) Orbit is a two dimensional track on which electron moves
3) Atom has definite boundary
4) Energies and angular momentum of orbits are quantized
48. Give the name of the inert gas atom in which the total number of d-electrons is equal to the difference in numbers of total p \& s - electrons
1) Ar
2) Kr
3) Xe
4) Rn
49. In which of the following pairs the two species are not isostructural?
1) CO_{3}^{-2} and NO_{3}^{-}
2) PCl_{4}^{+}and SiCl_{4}
3) $P F_{5}$ and $B r F_{5}$
4) $A l F_{6}^{3-}$ and $S F_{6}$
50. What is the dominant intermolecular force or bond that must be overcome in converting liquid $\mathrm{CH}_{3} \mathrm{OH}$ to a gas?
1) Covalent bonds
2) Dipole-dipole interaction
3) London dispersion forces
4) Hydrogen bonding
51. Volume occupied by one molecule of water (density $=1 \mathrm{gm} \mathrm{cm}^{-3}$)
1) $3.0 \times 10^{-23} \mathrm{~cm}^{3}$
2) $5.5 \times 10^{-23} \mathrm{~cm}^{3}$
$306.023 \times 10^{-23} \mathrm{~cm}^{3}$
3) $9.0 \times 10^{-23} \mathrm{~cm}^{3}$
52. When N_{2} is converted into NH_{3}, the equivalent weight of nitrogen will be
1) 1.67
2) 2.67
3) 3.67
4) 4.67
53. Which is not a property of $\mathrm{H}_{2} \mathrm{O}_{2}$
1) Conc. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is acidic in nature
2) $\mathrm{H}_{2} \mathrm{O}_{2}$ is a planar molecule
3) $\mathrm{H}_{2} \mathrm{O}_{2}$ is an excellent solvent for electrolysis
4) $\mathrm{H}_{2} \mathrm{O}_{2}$ is a diamagnetic
54. Read the following statements
I) Cs^{+}is highly hydrated
II) Li has highest melting point among Li, Na, $\mathrm{K} \& \mathrm{Rb}$
III) In alkali metals only Li forms nitride

The correct statements are

1) I \& II
2) II \& III
3) I \& III
4) I, II \& III
55. Solution of azeotropic nitric acid contain
1) $32 \% \mathrm{HNO}_{3}, 68 \% \mathrm{H}_{2} \mathrm{O}$ by mass
2) $50 \% \mathrm{HNO}_{3}, 50 \% \mathrm{H}_{2} \mathrm{O}$ by mass
3) $68 \% \mathrm{HNO}_{3}, 32 \% \mathrm{H}_{2} \mathrm{O}$ by mass
4) $30 \% \mathrm{HNO}_{3}, 70 \% \mathrm{H}_{2} \mathrm{O}$ by mass
