
44. The circuit shown in following figure contains two diode D_1 and D_2 each with a forward resistance of 50 ohm and with infinite backward resistance. If the battery voltage is 6 V, the current through the 100 ohm resistance (in amperes) is

3) 0.03 4) 0.036

45. Figure gives a system of logic gates. From the study of truth table it can be found that to produce a high out put (1) at R, we must have

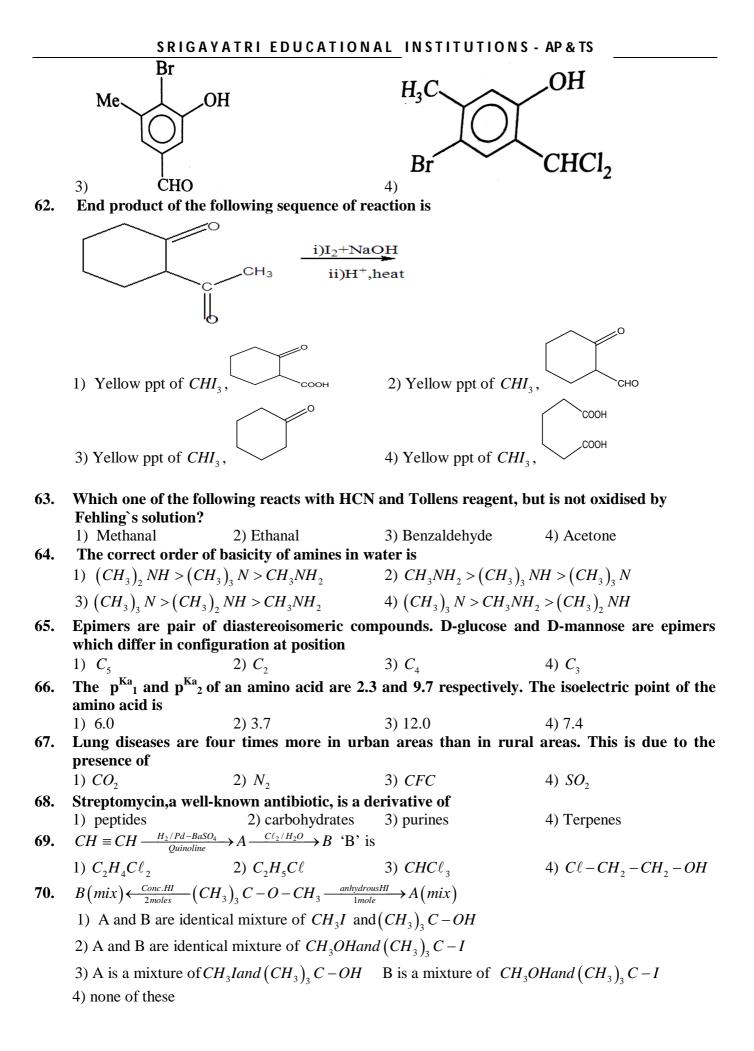
CHEMISTRY

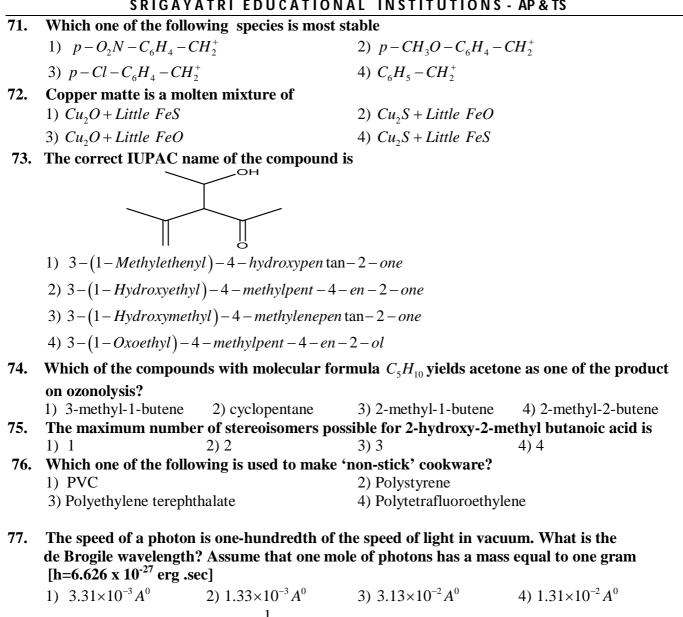
- 46. The strength of bond formed by overlapping of atomic orbitals is in order1) s-s < s-p < p-p2) s-s < p-p < s-p3) s-p < s-s < p-p4) p-p < s-s < s-p
- 47. The molecule which possess both sp³ and sp³d² hybridisation is 1) solid PCl_5 2) gaseous PCl_5 3) PCl_4 4) PCl_6
- **48.** Which of the following orders is correct for the bond dissociation energy of O_2, O_2^+, O_2^- and O_2^{2-} ?

1) $O_2^+ > O_2 > O_2^- > O_2^{2-}$	2) $O_2^+ > O_2 < O_2^- < O_2^{2-}$
3) $O_2^+ < O_2 < O_2^- < O_2^{2-}$	4) $O_2^+ > O_2^- > O_2^- < O_2^{2-}$

- 49. Ethers are more volatile than alcohols having same molecular formula. This is due to
1) Intermolecular H-bonding in ethers
3) Dipolar character of ethers2) Intermolecular H-bonding in alcohols
4) Resonance structure in alcohols
- 50. A co-ordination complex compound of cobalt has the molecular formulae containing five ammonia molecules, one nitro group and two chlorine atoms for one cobalt atom. One mole of this compound produces three mole ions in an aqueous solution and on reacting with excess of AgNO₃, AgCl precipitate. The ionic formula for this complex would be

1) $\left[Co(NH_3)_5(NO_2)\right]Cl_2$	$2) \left[Co(NH_3)_5 Cl \right] \left[Cl(NO_2) \right]$
$3) \left[Co(NH_3)_4 (NO_2)Cl_2 \right] Cl$	$4) \left[Co(NH_3)_5 \right] \left[(NO_2)_2 Cl_2 \right]$


51. Amongst TiF_6^{2-} , $CoF_6^{3-}Cu_2Cl_2$ and $NiCl_4^{2-}$ (atomic number Ti=22,Co=27,Cu=29,Ni=28). The colourless species are


- 1) $CoF_6^{3-} andNiCl_4^{2-}$ 2) $TiF_6^{2-} andCoF_6^{3-}$
- 3) $Cu_2Cl_2andNiCl_4^{2-}$ 4) $TiF_6^{2-}andCu_2Cl_2$

1) zero

2) 0.020

52.	2. A sample of water containing some dissolved table sugar and common salt is pa organic ion exchange resins. The resulting water will be			mmon salt is passed through	
	1) tasteless	2) Sweet	3) Salty	4) none of these	
53.	,	,	, •	a dissolved in fused cryolite	
	1) as a catalyst				
	2) to lower the fusion temperature of the Alumina				
	3) to decrease the rate	3) to decrease the rate of oxidation of carbon at the anode			
	4) to decrease the rate of oxidation of carbon at the cathode				
54.	Which of the following metals behave different than that of others when react with very dilute Nitric acid?				
	1) Iron	2) Copper	3) Zinc	4) Tin	
55.	A green coloured sol	ution of some salt chan	ges its colour to light	t pink on passing ozone	
	through it. Which of	f the following species r	epresent pink and g	reen colour respectively?	
	1) $Mn^{2+}andMnO_2$	2) MnO_4^{2-} and MnO_4^{-}	3) MnO_4^- and MnO_4^{2-}	- 4) $Cu^+ and Cu^{2+}$	
56.	When chlorine react obtained are	s with cold and dilute s	solution of sodium hy	droxide, the products	
		2) $Cl^{-} + ClO_{2}^{-}$	3) $Cl^{-} + ClO_{2}^{-}$	4) $Cl^{-} + ClO_{+}^{-}$	
57.		_	•		
57. Match the shape to the formula. Which pairing is incorrect?1) XeO_3 = trigonal planar2) $XeO_2F_2 = see - saw$		Saw .			
	3) $\left[XeF_3\right]^+ = T$ shape	•	4) $[XeF_5]^-$ = distor	ted pentagonal bipyramidal	
58.	The elements which	occupy the peaks of ior	nization energy curve are		
	1) Na, K, Rb, Cs	2) Na, Mg, Cl, I	3) Cl, Br, I, F	4) He, Ne, Ar, Kr	
59.	When sodium metal	is dissolved in liquid a	mmonia, blue colour solution is formed. The blu		
	colour is due to				
	1) Solvated Na^+ ions		2) Solvated electron	ns	
	3) Solavated NH_2^- io	ns	4) Solvated protons	5	
60.	An organic compour	d A (C_4H_9Cl) on react	ion with Na/diethyl e	ther gives a hydrocarbon,	
		ination gives only one o	chloro derivative. A i	S	
	1) t-butyl chloride		2) s- butyl chloride		
	3) Iso butyl chloride		4) n- butyl chloride		
61.	The product (\mathbf{Y}) of the Me	he following sequence of OH	of the reactions would	d be	
		$\frac{(i) \operatorname{CHCl}_3/N}{(ii) \operatorname{H}_3}$	$\succ \mathbf{v}$ \mathbf{D}_{2}	$/\text{Fe}Br_3$ Y	
	СНО			011	
	MeOH		Me	OH	
	YOY "				
	$\langle \cdot \rangle$		Br	CHO	
	1) B r		2)		

Two gaseous equilibria $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons SO_{3(g)}$ and $2SO_{3(g)} \rightleftharpoons 2SO_{2(g)} + O_{2(g)}$ have equilibrium 78. constants K₁ and K₂ respectively at 298 K. which of the following relationships between K₁ and K₂ is correct?

1)
$$K_1 = K_2$$
 2) $K_2 = K_1^2$ 3) $K_2 = \frac{1}{K_1^2}$ 4) $K_2 = \frac{1}{K_1}$

The rate constant of the reaction 79.

 $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$ is 3 x 10⁻³ min⁻¹

- At what concentration of H_2O_2 , the rate of the reaction will be 2 x 10⁻⁴ Ms⁻¹? 1) 6.67 x 10^{-2} (M) 2) 2 (M) 3) 4 (M) 4) 0.08 (M)
- For the non-stoichiometric reaction, $2A+B \rightarrow C+D$, the following kinetic data were obtained in 80. three separate experiments, all at 298 K

Initial concentration (A)	Initial concentration (B)	Initial rate of formation of C (C)
0.1 M	0.1 M	1.2×10^{-3}
0.1 M	0.2 M	1.2×10^{-3}
0.2 M	0.1 M	2.4×10^{-3}

The rate law for the formation of C is

1)
$$\frac{dc}{dt} = k[A][B]$$
 2) $\frac{dc}{dt} = k[A]^2[B]$ 3) $\frac{dc}{dt} = k[A][B]^2$ 4) $\frac{dc}{dt} = k[A]$

NEET MODEL TOT GT

81.		RIEDUCATION potential for Cu^{2+}	/ Cu is +0 34 V Th		
J1 .	The standard reduction potential for Cu^{2+} / Cu is +0.34 V. The reduction potential for $Cu^{+2} + 2e^{-} \longrightarrow Cu$ is $\left\lceil K_{sp} \left\lceil Cu(OH)_{2} \right\rceil = 1.0 \times 10^{-20} \right\rceil$			e reduction potential at pri – 14	
			_		
~ •) + 0.25 V	,	4) +0.34 V	
82. The behavior of a real gas is usually depicted by				L V	
	a constant temperature. At high temperature and high pressure,Z is usually more than one. This fact can be explained by vander Waals equation when				
	1) the constant 'a' is negl		-	a' is negligible and not 'a'	
83.	·	3) both constants 'a' and 'b' are negligible 4) both the constants 'a' and 'b' are not negligible The pK_a of a weak acid (HA) is 4.5 . The pOH of an aqueous buffered solution of HA in which			
•	50% of the acid is ionized		1		
) 2.5	3) 9.5	4) 7.0	
84.	An element crystallizes in	n fcc lattice having	edge length 350 p	m. Maximum radius of the atom	
	which can be placed in the interstitial site without distorting the structure is				
	· •) 117 pm	3) 51.23 pm	4) 83 pm	
85.		rmed by ccp arrang		in rock salt structure are	
	1) occupied by Na ⁺ ions		2) occupied by Cl^- ions		
	3) occupied by either Na ⁺ or Cl^- ions		4) vacant		
07	E . U . 1 . 4 . 1 . 1 . 1 . 1 .			ШО	
86.	Following data has been	given for CO ₂ for the	he concentration i	n H ₂ O	
86.	Following data has been Temperature	given for CO ₂ for the second			
86.	Ç				
86.	Temperature	Henrys constan	nt Pressure		
86.	Temperature 273K	Henrys constan 600atm	nt Pressure 0.30 atm		
86.	Temperature 273K 333K	Henrys constan 600atm 3400atm	nt Pressure 0.30 atm P ₂		
86.	Temperature 273K 333K	Henrys constan 600atm 3400atm	nt Pressure 0.30 atm P ₂		
86.	Temperature273K333KIf solution of CO2 in H2Cthe solution is	Henrys constan 600atm 3400atm	nt Pressure 0.30 atm P ₂		

- water are 1.86 and 0.512 K molality⁻¹ respectively, the above solution will freeze at 1) -6.54°C 2) 6.54°C 3) -0.654°C 4) 0.654°C
 88. Which of the following is contributed towards the extra stability of lyophilic colloids?
 - 1) Hydration2) charge3) colour4) Tyndall effect
- 89. If 900 J/g of heat is exchanged at boiling point of water, then what is the increase in entropy1) 43.4 J/mol2) 87.2 J/mol3) 900 J/mol4) zero
- 90. Smelting of iron ore takes place through this reaction

 $2Fe_2O_3(s) + 3C(s) \rightarrow 4Fe(s) + 3CO_2(g)$

 $\Delta H^{\,o}_{f}$ of $Fe_{2}O_{3}$ and $CO_{2}\,\mathrm{are}$ -8242 kJ/mol and -393.7 kJ/mol

The reaction is

1) Endothermic 2) Exe	othermic 3) $\Delta H = 0$	4) none of these
-----------------------	----------------------------	------------------

BIOLOGY

91. Organisms that fix nitrogen in aquatic habitats are

Brown algae
Green algae
Cyanobacteria
All of these

92. Which of one following events do not take place during normal inspiration in human?

Upward and outward movement of ribs and sternum
Contraction of phrenic muscles
Increased intra pulmonary pressure

4) Decreased intra pulmonary pressure