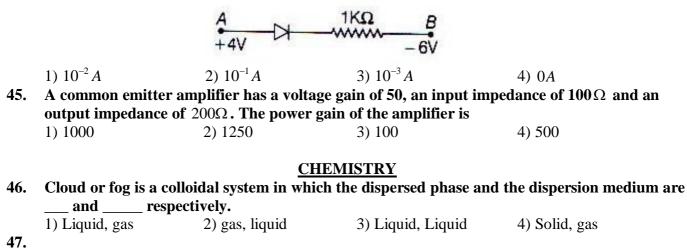
40. The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature T(kelvin) and mass m, is

1)
$$\frac{h}{\sqrt{mkT}}$$
 2) $\frac{h}{\sqrt{3mkT}}$ 3) $\frac{2h}{\sqrt{3mkT}}$ 4) $\frac{2h}{\sqrt{mkT}}$


41. Two identical photocathodes receive light of frequencies f_1 and f_2 . If the velocities of the photoelectrons (of mass *m*) coming out are respectively v_1 and v_2 , then

1)
$$v_1^2 - v_2^2 = \frac{2h}{m}(f_1 - f_2)$$

2) $v_1 + v_2 = \left[\frac{2h}{m}(f_1 + f_2)\right]^{1/2}$
3) $v_1^2 + v_2^2 = \frac{2h}{m}(f_1 + f_2)$
4) $v_1 - v_2 = \left[\frac{2h}{m}(f_1 - f_2)\right]^{1/2}$

42. An excited hydrogen atom returns to the ground state. The wavelength of emitted photon is λ . The principal quantum number of the excited state will be

1)
$$\left(\frac{\lambda R}{\lambda R-1}\right)^{1/2}$$
 2) $\left(\frac{\lambda R-1}{\lambda R}\right)^{1/2}$ 3) $\left[\lambda (\lambda R-1)\right]^{1/2}$ 4) $\left[\frac{1}{\lambda R (\lambda R-1)}\right]^{1/2}$

- **43**. Radioactive material A has decay constant 8λ and material B has decay constant λ . Initially, they have same number of nuclei. After what time, the ratio of number of nuclei of material A to that B will be $\frac{1}{\rho}$?
 - 3) $\frac{1}{8\lambda}$ 2) $\frac{1}{7\lambda}$ 1) $\frac{1}{2}$ 4) $\frac{1}{02}$
- **44**. Consider the junction diode as ideal. The value of current flowing through AB is

Of the incont. Nach i) H20(HT

- **48. IUPAC** name of Acetanilide is : 1) N-phenyl ethanamide
 - 3) N-phenyl benzene carboxamide
- 2) N-methyl benzanamide 4) N-methyl ethanamide

0

- 04

C CH204

49. In which of the following molecules all the effects namely inductive, mesomeric and hyperconjugation operate ? LOCHY C47 1) 2) 3) 50. Total number of isomers (structural, stereo) possible with the formula $C_4 H_{10}O$ 2) 4 4) 5 1) 6 3) 8 $PbCl_4$ exists but $PbBr_4$ and PbI_4 do not exist because of 51. 2) Strong oxidizing character of Pb^{4+} 1) Large size of $Br^- \& I^-$ 4) Low electronegativity of Br and I 3) Strong reducing character of pb^{4+} In an organic compound various elements are estimated by different experiments. 52. Incorrect about their estimation is: 1) chlorine is estimated as ClO_2 2) Sulphur is estimated as $BaSO_4$ 3) Nitrogen is estimated as N_2 (in dumas) and NH_3 (in kjeldahl's) 4) Phosphorous is estimated either as $Mg_2P_2O_7$ (or) as $(NH_4)_3PO_4.12Mo_3O_3$ $CH_3 - \overset{\parallel}{C} - CH_3 \xrightarrow{i) CH_3mgBr}{ii) H_2O}$ product. What is that product ? 53. 2) $CH_3 - CH_3 - CH_3 - CH_3$ 1) $CH_3 - CH_3 - CH_3$ OH 4) $CH_3 - CH_2 - CH_2 - CH_3$ 3) $CH_{3} - C_{H_{3}} H - CH_{3}$ 54. The final product of the following reaction sequence is Komoy / A147 1004 1) 2) Identify (C) in the reaction (s) 55. $\xrightarrow{\#_{20},\&}(\underline{R}) \xrightarrow{(i) c\#d_2, Ko\#_1 \otimes} \\ \xrightarrow{\#_{10}, \&}(\underline{R}) \xrightarrow{(i) c\#d_2, Ko\#_1 \otimes} \\ \xrightarrow{\#_{10}, \&}(\underline{R}) \xrightarrow{$ (A)

1)

3)

4)

2)

	SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP&TS						
67.	The pH of 0.1M solution of the following salts increases in the order						
	1) $NaCl < NH$	$H_4Cl < NaCN <$: HCl	2)	$HCl < NH_4Cl < Nac$	Cl < NaCN	
	3) NaCN < N	$H_4Cl < NaCl < $: HCl	4)	HCl < NaCl < NaCl	$N < NH_4Cl$	
68.	$2N_2O_5 \rightarrow 4NO_2 + O_2$ what is the ratio of the rate of decomposition of N_2O_5 to rate of formation of NO_2 is :						
	1) 1:2	2) 2			1:4	4) 4:1	
69.		-	ed on methylatio				
=0	1) $B_2(CH_3)_6$				$B_2H_3(CH_3)_3$	· · · · · ·	
70.	13g of a metal 'M' is deposited at cathode by passing 0.4F of electricity. If the cathodic reaction is $M^{n+} + ne^- \rightarrow M$, the formula of the metallic chloride is (Atomic weight of M=65)						
	1) MCl_{4}		, the formula of t MCl_3		MCl	4) MCl_2	
71.			5	,		+) mcl_2	
/ 1.	For which of the following entropy change is negative 1) Conversion of $CaSO_{4(s)}$ into $CaO_{(s)}$ and $SO_{2(g)}$. 2) Dissolution of I ₂ in water					in water	
	3) Synthesis	()	(8)	4) Sublimation of dry ice			
72	· •		tiviting at infinita	مانا	,	<i>KOH & KCl</i> are 152.8,	
72.							
						mol^{-1} and % dissociation	
					the same temperatu		
73.	1) 269.6 ; 9.6) 2)2	205.4 ; 8.4	3)	275.6;0.091	4) 275.6; 9.1	
101	G	0					
	í T	TF					
	and		e				
	1) Functional	l isomers + Functional is	omers	,	Metamers Positional isomers		
74.					$\frac{1}{2}$ for the spin quantum, then the potassium		
/				/2)	tor the spin quantu	in, then the potassium	
	1) IA	ne following gr 2) V	VII A	3)	IV A	4) III A	
75.	,	/			ng to silicones are.	.,	
			ydrophobic chara	cter			
	/	biocompatible they have high	n thermal stability	and 1	ow dielectric strengt	h	
	· •		t to oxidation and		-		
	1) A, B, C, D		A, B, C	,	A, B	4) A, B, D	
76.						pressure of 200 pascals	
		0	t in $JK^{-1} mol^{-1}$, x		4 · D	4 D	
	1) $\frac{2R}{4+R}$	2) -	$\frac{2K}{A P}$	3)	$\frac{4+R}{2R}$	4) $\frac{4-\kappa}{2R}$	
77.			1 10		210	action $2A + B \rightarrow products$	
	Experiment	[A]	[<i>B</i>]		nitial rate of reactio		
		$(molL^{-1})$	$\left(\textit{molL}^{-1} ight)$	n	$nolL^{-1}\min^{-1}$		
	Ι	0.10	0.20				
	I	0.10	0.25		5.93×10^{-3}		
	III	0.20	0.30		$.386 \times 10^{-2}$		
	The time (in 1) 5	minutes) requ	ired to consume	half (3)		4) 100	
	1)5	2)		5)	1	1) 100	

	SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP&TS					
78.	The following will have lowest heat of hydrogenation per mole of compound is :					
79.	In the sulphonation of benzene, the electrop	, , , , , , , , , , , , , , , , , , , ,				
	1) HSO_{4}^{-} 2) SO_{3}	3) SO_2 4) SO_4^{2-}				
80.	When Grignard reagent (C_2H_5MgBr) is tree	eated with phenol, we get :				
	1) C_2H_5OH 2) C_2H_6	3) Ethyl benzene 4) Benzene				
81.	Reaction of HBr with propene in absence o 1) electrophilic addition	2) electrophilic substitution				
07	3) nucleophilic addition	4) free radical addition				
82.	Column – I	Column – II				
	me = 0 -> propane					
	1) me	a) Alkaline $KMnO_4$				
	$\succ \rightarrow \checkmark$					
	2) 04	b) HI + P				
	$_{3)} \land \rightarrow >$	c) <i>AlCl</i> ₃ at 570K				
	\wedge					
	$4) \qquad \longrightarrow \qquad \land \qquad \land$	d) NaI + acetone				
	$1 > 1 > \cdots > $	e) Zn-Hg/Conc.HCl				
	1) $1 \rightarrow e; 2 \rightarrow a; 3 \rightarrow b; 4 \rightarrow c$ 3) $1 \rightarrow c; 2 \rightarrow a; 3 \rightarrow e; 4 \rightarrow b$	2) $1 \rightarrow a; 2 \rightarrow e; 3 \rightarrow c; 4 \rightarrow b$ 4) $1 \rightarrow d; 2 \rightarrow a; 3 \rightarrow b; 4 \rightarrow e$				
83.		as an oxidation number of +7. Therefore it is :				
001	1) sp^3d^3 hybridized 2) sp^3 hybridized	3) dsp^2 hybridized 4) d^3sp^3 hybridized				
84.		e following set of orbitals are not degenerate				
		3) $3d_{xy}$, $3d_{yz}$ and $3d_{zx}$ 4) $3d_{x^2-y^2}$ and $3d_{z^2}$				
85.						
	electrons of the ion are : $(1BM = 9.273 \times 10^{-24} J / T)$					
	1) 4 2) 2	3) 1 4) 3				
86.	No.of ionisable & non-iosizable Cl^- ions in	COCl ₃ .5NH ₃ respectively are				
	1) 3,0 2) 2,1	3) 1,2 4) 0,3				
87.	For the given complex $\left\lceil COCl_2(en)(NH_3)_2 \right\rceil$	$\Big ^+$, the number of geometrical, optical and total				
	isomers of all types possible respectively ar					
00	1) 2,2 and 4 2) 2,2 and 3	3) 2,0 and 2 4) 0,2 and 2				
88.	Column – I (Equivalent conductance)	Column – II Formule				
	A) 229	\mathbf{p}) $\begin{bmatrix} Pt(NH_3)_3 Cl \end{bmatrix} Cl_3$				
	B) 97	$\mathbf{q} = \begin{bmatrix} Pt \left(NH_3 \right)_3 Cl_3 \end{bmatrix} Cl$				
	C) 404	r) $\begin{bmatrix} Pt(NH_3)_4 Cl_2 \end{bmatrix} \begin{bmatrix} Cl_2 \end{bmatrix}$				
	D) 523	s) $\left[Pt(NH_3)_6 \right] Cl_4$				
	A B C D	$\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D}$				
	1) s p q r	1) r q s p				
	3) r q p s	4) s p r q				

Number of HIO_4 molecules required for complete oxidation of one mole of glucose is 89. 1)4 2) 5 3) 6 4) 1 90. List – I List – II a) $\left(-NH - \left(CH_2\right)_5 - CO - \right)_n$ 1) Urea formaldehyde resin b) $\left(-NH - \left(CH_2\right)_6 - NH - \right)_n$ 2) Neoprene c) $\left(-CH_2 - C_2 = CH - CH_2 - \right)$ 3) PVC d) $\left(CH_2 - CH_{-} \right)$ 4) Nylon-6 e) $(NH - CO - NH - CH_2 -)$ The correct match is 3 1 2 4 1 2 4 3 с 1) e d b 2) e b d С

BIOLOGY

d

а

91. Study the following table which shows different organisms with their taxonomic categories. Common name

с

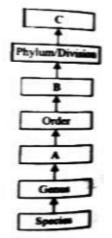
S.No	Common name	Family	Order	Class	Division
i.	Man	Hominidae	Primata	Mammalia	Α
ii.	Housefly	Muscidae	Diptera	В	Arthropoda
iii.	Mango	С	Sapindales	Dicotyledonae	Angiospermae
iv.	Wheat	Poaceae	Poales	D	Angiospermae
Select the correct ontion for A_B_C and D					

Select the correct option for <i>N</i> , <i>D</i> , <i>C</i> and <i>D</i> .					
Α	В	С	D		
1) Chordata	Insecta	Anacardiaceae	Monocotyledonae		
2) Animalia	Arachnida	Anacardiaceae	Monocotyledonae		
3) Chordata	Arachnida	Polygonaceae	Monocotyledonae		
4) Non – Chordata	Insecta	Anacardiaceae	Dicotyledonae		
A normal woman w	hasa fathar had ha	amonhilia marriad a nar	mal man What is the chance	n	

- 92. A normal woman, whose father had haemophilia, married a normal man. What is the chance of occurrence of hemophilia in their children?
 - 1) 25 % children will be hemophilic

d

b


4)

e

- 2) 50% children will be hemophilic
- 3)75 % children will be hemophilic

4) None hemophilic but 75 % will be carriers

93. The given flow chart represents the hierarchy of various taxonomic categories. Identify the missing categories (A, B and C) and select the correct statements regarding :

3)

a

с