40. The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature T (kelvin) and mass m, is
1) $\frac{h}{\sqrt{m k T}}$
2) $\frac{h}{\sqrt{3 m k T}}$
3) $\frac{2 h}{\sqrt{3 m k T}}$
4) $\frac{2 h}{\sqrt{m k T}}$
41. Two identical photocathodes receive light of frequencies f_{1} and f_{2}. If the velocities of the photoelectrons (of mass \boldsymbol{m}) coming out are respectively v_{1} and v_{2}, then
1) $v_{1}^{2}-v_{2}^{2}=\frac{2 h}{m}\left(f_{1}-f_{2}\right)$
2) $v_{1}+v_{2}=\left[\frac{2 h}{m}\left(f_{1}+f_{2}\right)\right]^{1 / 2}$
3) $v_{1}^{2}+v_{2}^{2}=\frac{2 h}{m}\left(f_{1}+f_{2}\right)$
4) $v_{1}-v_{2}=\left[\frac{2 h}{m}\left(f_{1}-f_{2}\right)\right]^{1 / 2}$
42. An excited hydrogen atom returns to the ground state. The wavelength of emitted photon is λ. The principal quantum number of the excited state will be
1) $\left(\frac{\lambda R}{\lambda R-1}\right)^{1 / 2}$
2) $\left(\frac{\lambda R-1}{\lambda R}\right)^{1 / 2}$
3) $[\lambda(\lambda R-1)]^{1 / 2}$
4) $\left[\frac{1}{\lambda R(\lambda R-1)}\right]^{1 / 2}$
43. Radioactive material A has decay constant 8λ and material B has decay constant λ. Initially, they have same number of nuclei. After what time, the ratio of number of nuclei of material A to that B will be $\frac{1}{e}$?
1) $\frac{1}{\lambda}$
2) $\frac{1}{7 \lambda}$
3) $\frac{1}{8 \lambda}$
4) $\frac{1}{9 \lambda}$
44. Consider the junction diode as ideal. The value of current flowing through $A B$ is

1) $10^{-2} \mathrm{~A}$
2) $10^{-1} \mathrm{~A}$
3) $10^{-3} \mathrm{~A}$
4) 0 A
45. A common emitter amplifier has a voltage gain of 50 , an input impedance of 100Ω and an output impedance of 200Ω. The power gain of the amplifier is
1) 1000
2) 1250
3) 100
4) 500

CHEMISTRY

46. Cloud or fog is a colloidal system in which the dispersed phase and the dispersion medium are __ and \qquad respectively.
1) Liquid, gas
2) gas, liquid
3) Liquid, Liquid
4) Solid, gas
47.

1)
2)

3)

4)
48. IUPAC name of Acetanilide is :

1) N-phenyl ethanamide
2) N-methyl benzanamide
3) N-phenyl benzene carboxamide
4) N -methyl ethanamide
49. In which of the following molecules all the effects namely inductive, mesomeric and hyperconjugation operate?
1)

2)

3)

4)

50. Total number of isomers (structural, stereo) possible with the formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$

1) 6
2) 4
3) 8
4) 5
51. PbCl_{4} exists but PbBr_{4} and PbI_{4} do not exist because of
1) Large size of $\mathrm{Br}^{-} \& I^{-}$
2) Strong oxidizing character of Pb^{4+}
3) Strong reducing character of $p b^{4+}$
4) Low electronegativity of Br and I
52. In an organic compound various elements are estimated by different experiments. Incorrect about their estimation is:
1) chlorine is estimated as ClO_{2}
2) Sulphur is estimated as BaSO_{4}
3) Nitrogen is estimated as N_{2} (in dumas) and NH_{3} (in kjeldahl's)
4) Phosphorous is estimated either as $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (or) as $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{Mo}_{3} \mathrm{O}$
53. $\mathrm{CH}_{3}-\stackrel{\mathrm{i}}{\mathrm{C}}-\mathrm{CH}_{3} \xrightarrow[\text { ii) } \mathrm{H}_{2} \mathrm{O}]{\text { i) } \mathrm{CH}_{3} \mathrm{mbr}}$ product. What is that product ?
1) $\mathrm{CH}_{3}-\underset{\substack{\mathrm{O} \\ \mathrm{OH}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
2)

3) $\mathrm{CH}_{3}-\underset{\substack{\mid \\ \mathrm{CH}_{3}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
4) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
54. The final product of the following reaction sequence is
$[0] \xrightarrow[\mathrm{AlH}_{3}]{\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl}}$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}$
AlCl_{3}

KO/ OH^{-}
1)

I
2)

3)

4)
55. Identify (\mathbf{C}) in the reaction (\mathbf{s})

1) 4
2)

3) 04
4)

56.

1)

2)

3)

4)

57.

CoCl

1)

3)

2)

58. By the action of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, phosphorous changes to

1) $\mathrm{H}_{3} \mathrm{PO}_{3}$
2) HPO_{3}
3) $\mathrm{H}_{3} \mathrm{PO}_{4}$
4) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
59. Identify the correct sequence of increasing number of π-bonds in structure of following molecules :
I) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
II) $\mathrm{H}_{2} \mathrm{SO}_{3}$
III) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
1) I, II, III
2) II, III, I
3) II, I, III
4) I, III, II
60. The oxidation state of Iron in Brownring test.
1) 0
2) 1
3) 2
4) 3
61. Nessler's reagent is used to detect :
1) CrO_{4}^{2-}
2) PO_{4}^{3-}
3) MnO_{4}^{-}
4) NH_{4}^{+}
62. The radius of which of the following hydrate ion is smallest ?
1) $\left[\mathrm{Li}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right]^{+}$
2) $\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right]^{+}$
3) $\left[K\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right]^{+}$
4) $\left[\mathrm{Cs}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right]^{+}$
63. The ion helpful for controlling heart beating and muscle contraction is
1) Mg^{2+}
2) Na^{+}
3) K^{+}
4) Ca^{2+}
64. The value of ' \mathbf{n} ' in the reaction $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+n \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+n \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ will be
1) 2
2) 3
3) 6
4) 7
65. An aqueous solution of 6.3 g of oxalic acid dihydrate is made up of to 250 mL . The volume of 0.1 N NaOH required to completely neutralise 10 mL of this solution is:
1) 20 mL
2) 40 mL
3) 10 mL
4) 4 mL
66. The degree of dissociation of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in a dilute aqueous solution containing 14 g of the salt per 200 g of water $100^{\circ} \mathrm{C}$ is 70%. If the vapour pressure of water at $100^{\circ} \mathrm{C}$ is 760 mm . The vapour pressure of the solution is.
1) 746.3 mm of Hg
2) 757.5 mm of Hg
3) 740.9 mm of Hg
4) 750 mm of Hg
67. The $p H$ of 0.1 M solution of the following salts increases in the order
1) $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCl}$
2) $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
3) $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
4) $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$
68. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ what is the ratio of the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ to rate of formation of NO_{2} is :
1) $1: 2$
2) $2: 1$
3) $1: 4$
4) $4: 1$
69. The ultimate product formed on methylation of diborane is
1) $\mathrm{B}_{2}\left(\mathrm{CH}_{3}\right)_{6}$
2) $\mathrm{B}_{2} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$
3) $\mathrm{B}_{2} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{3}$
4) $\mathrm{B}_{2} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{4}$
70. 13 g of a metal ' \mathbf{M} ' is deposited at cathode by passing 0.4 F of electricity. If the cathodic reaction is $M^{n+}+n e^{-} \rightarrow M$, the formula of the metallic chloride is (Atomic weight of $M=65$)
1) $M C l_{4}$
2) MCl_{3}
3) MCl
4) MCl_{2}
71. For which of the following entropy change is negative
1) Conversion of $\mathrm{CaSO}_{4(\mathrm{~s})}$ into $\mathrm{CaO}_{(\mathrm{s})}$ and $\mathrm{SO}_{2(\mathrm{~g})}$.
2) Dissolution of I_{2} in water
3) Synthesis of ammonia
4) Sublimation of dry ice
72. At 298 K the molar conductivities at infinite dilution \wedge_{m}^{0} of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{KOH} \& \mathrm{KCl}$ are 152.8, 272.6 and $149.8 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ respectively. The \wedge_{m}^{0} of $\mathrm{NH}_{4} \mathrm{OH}$ is $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ and \% dissociation of $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ with $\wedge_{m}=25.1 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ at the same temperature are :
1) $269.6 ; 9.6$
2) $205.4 ; 8.4$
3) $275.6 ; 0.091$
4) $275.6 ; 9.1$
73.

1) Functional isomers
2) Metamers
3) Metamers + Functional isomers
4) Positional isomers
74. If there are three possible values $(-1 / 2,0,+1 / 2)$ for the spin quantum, then the potassium belongs to the following group is
1) IA
2) VII A
3) IV A
4) III A
75. Correct statements among the following regarding to silicones are.
A) They are polymers with hydrophobic character
B) They are biocompatible
C) In general, they have high thermal stability and low dielectric strength
D) Usually, they are resistant to oxidation and use as greases
1) A, B, C, D
2) A, B, C
3) A, B
4) A, B, D
76. 0.5 moles of gas A and x moles of gas B exert $10 m^{3}$ at 1000 K with a pressure of 200 pascals Given \mathbf{R} is the gas constant in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, \mathbf{x} is
1) $\frac{2 R}{4+R}$
2) $\frac{2 R}{4-R}$
3) $\frac{4+R}{2 R}$
4) $\frac{4-R}{2 R}$
77. The following results were obtained during kinetic studies of the reaction $2 A+B \rightarrow$ products

Experiment	$[A]$ $\left(\mathrm{molL}^{-1}\right)$	$[B]$ $\left(\mathrm{molL}^{-1}\right)$	Initial rate of reaction $\mathrm{molL}^{-1} \mathrm{~min}^{-1}$
I	0.10	0.20	6.93×10^{-3}
II	0.10	0.25	6.93×10^{-3}
III	0.20	0.30	1.386×10^{-2}

The time (in minutes) required to consume half of ' A ' is

1) 5
2) 10
3) 1
4) 100
78. The following will have lowest heat of hydrogenation per mole of compound is :
1)

2)

3)

4)

79. In the sulphonation of benzene, the electrophile involved is :

1) HSO_{4}^{-}
2) SO_{3}
3) SO_{2}
4) SO_{4}^{2-}
80. When Grignard reagent $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}\right)$ is treated with phenol, we get :
1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
2) $\mathrm{C}_{2} \mathrm{H}_{6}$
3) Ethyl benzene
4) Benzene
81. Reaction of $\mathbf{H B r}$ with propene in absence of peroxide is :
1) electrophilic addition
2) electrophilic substitution
3) nucleophilic addition
4) free radical addition
82. Column - I
Column - II

1)

a) Alkaline KMnO_{4}
2)

b) $\mathrm{HI}+\mathrm{P}$
3)

c) AlCl_{3} at 570 K
4)

d) $\mathrm{NaI}+$ acetone
e) $\mathrm{Zn}-\mathrm{Hg} / \mathrm{Conc} . \mathrm{HCl}$

1) $1 \rightarrow e ; 2 \rightarrow a ; 3 \rightarrow b ; 4 \rightarrow c$
2) $1 \rightarrow a ; 2 \rightarrow e ; 3 \rightarrow c ; 4 \rightarrow b$
3) $1 \rightarrow c ; 2 \rightarrow a ; 3 \rightarrow e ; 4 \rightarrow b$
4) $1 \rightarrow d ; 2 \rightarrow a ; 3 \rightarrow b ; 4 \rightarrow e$
83. In permanganate ion MnO_{4}^{-}, manganese has an oxidation number of +7 . Therefore it is :
1) $s p^{3} d^{3}$ hybridized
2) $s p^{3}$ hybridized
3) $d s p^{2}$ hybridized
4) $d^{3} s p^{3}$ hybridized
84. In the presence of strong electrical field, the following set of orbitals are not degenerate
1) $3 d_{x y}$ and $3 d_{y z}$
2) $3 d_{x y}$ and $3 d_{z^{2}}$
3) $3 d_{x y}, 3 d_{y z}$ and $3 d_{z x}$
4) $3 d_{x^{2}-y^{2}}$ and $3 d_{z^{2}}$
85. The magnetic moment of an ion is close to 36×10^{-24} joule/tesla. The number of unpaired electrons of the ion are : $\left(1 B M=9.273 \times 10^{-24} \mathrm{~J} / \mathrm{T}\right)$
1) 4
2) 2
3) 1
4) 3
86. No.of ionisable \& non-iosizable Cl^{-}ions in $\mathrm{COCl}_{3} .5 \mathrm{NH}_{3}$ respectively are
1) 3,0
2) 2,1
3) 1,2
4) 0,3
87. For the given complex $\left[\mathrm{COCl}_{2}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$, the number of geometrical, optical and total isomers of all types possible respectively are
1) 2,2 and 4
2) 2,2 and 3
3) 2,0 and 2
4) 0,2 and 2
88. Column - I
(Equivalent conductance)
Column - II

Formule

p) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Cl}_{3}$
В) 97
q) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl} 3\right] \mathrm{Cl}$
C) 404
r) $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2}$
D) 523
s) $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] C l_{4}$

A	B	C	D	
$1)$	s	p	q	r
$3)$	r	q	p	s

A $\quad \mathbf{B} \quad \mathbf{C} \quad \mathbf{D}$

1) $\mathrm{r} \quad \mathrm{q} \quad \mathrm{s} \quad \mathrm{p}$
2) $\mathrm{s} \quad \mathrm{p} \quad \mathrm{r} \quad \mathrm{q}$
89. Number of HIO_{4} molecules required for complete oxidation of one mole of glucose is
1) 4
2) 5
3) 6
4) 1
90. List - I
1) Urea formaldehyde resin

List - II
a) $\left(-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{CO}-\right)_{n}$
2) Neoprene
b) $\left(-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}-\right)_{n}$
3) PVC
c) $\left(-\mathrm{CH}_{2}-\underset{\substack{\mathrm{Cl} \\ \mathrm{C}}}{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{2}-\right)_{n}$
4) Nylon-6
d) $\left(\mathrm{CH}_{2}-\underset{\substack{\mathrm{CH} \\ \vdots \\ \vdots}}{ }\right)_{n}$
e) $\left.\mathrm{NH}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}_{2}-\right)_{n}$

The correct match is

	1	2	3	4		1	2	3	4
$1)$	e	d	c	b	$2)$	e	c	b	d
$3)$	a	c	d	b	$4)$	e	c	d	a

BIOLOGY

91. Study the following table which shows different organisms with their taxonomic categories. Common name

S.No	Common name	Family	Order	Class	Division
i.	Man	Hominidae	Primata	Mammalia	A
ii.	Housefly	Muscidae	Diptera	B	Arthropoda
iii.	Mango	C	Sapindales	Dicotyledonae	Angiospermae
iv.	Wheat	Poaceae	Poales	D	Angiospermae

Select the correct option for A, B, C and D.

A	B	C	D
1) Chordata	Insecta	Anacardiaceae	Monocotyledonae
2) Animalia	Arachnida	Anacardiaceae	Monocotyledonae
3) Chordata	Arachnida	Polygonaceae	Monocotyledonae
4) Non - Chordata	Insecta	Anacardiaceae	Dicotyledonae

92. A normal woman, whose father had haemophilia, married a normal man. What is the chance of occurrence of hemophilia in their children?
1) 25% children will be hemophilic
2) 50% children will be hemophilic
3) 75% children will be hemophilic
4) None hemophilic but 75% will be carriers
93. The given flow chart represents the hierarchy of various taxonomic categories. Identify the missing categories (A, B and C) and select the correct statements regarding :

