SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP&TS

			TAL INSTITUTIO						
37.	Number of fissions po 200MeV)			n energy released per fission is					
	1) 6.2×10^{10}	$2) 62x10^{10}$	$3)\ 0.62 \times 10^{10}$	4) 3.2×10^{10}					
38.				$another\ radioactive\ substance$					
	B. Initially the number of nuclei of A and B are N_A and N_B respectively. After two half live								
	of A , number of nuclei of both are equal. Then the ratio $\frac{N_A}{N_B}$ is								
	1) 1	2) 1	2) 1	1					
	1) $\frac{1}{8}$	2) $\frac{1}{16}$	$\frac{3}{4}$	4) $\frac{1}{3}$					
39.	A potential barrier V volts exists across a P-N junction the thickness of the depletion region is 'd'. An electron with velocity 'v' approaches, P-N junction from N side. The velocity of the electron across the junction is								
				$\sqrt{2V_{o}}$					
	1) $\sqrt{v^2 + \frac{2Ve}{m}}$	2) $\sqrt{v^2 - \frac{2ve}{m}}$	3) V	4) $\sqrt{\frac{2Ve}{m}}$					
	y m	y m		y m					
40.	Two NOT gates and one AND gate are connected as shown. The system is equivalent to								
		0	TI.						
		a No							
		B-							
	1) AND	2) NOR	3) OR	4) NAND					
41.			as found to be 4V and	d maximum voltage 12V. Find					
	percent modulation is		3) 66.7%	4) 50%					
42.	1) 75% Parallel rays of light	2) 60% focused by a thin co	· · · · · · · · · · · · · · · · · · ·	,					
T20	Parallel rays of light focused by a thin convex lens. A thin concave lens of same focal length then joined to the convex lens and the result is that. 1) The focal point shifts away from the lens by a small distance 2) The focal point shifts towards the lens by a small distance 3) The focal point of lens does not shift at all 4) The focal point shifts to infinity.								
43.	-		ow it and inside wate	er. X is the height of the bird					
	above the surface of water and Y is the depth of the fish below surface of water. If refractive index of water w.r.t air is μ , the distance of the fish as observed by the bird is								
	1) X+Y	$2) X + \frac{Y}{\mu}$	3) μX+Y	4) μX+μY					
44.				icroscope. The aperture of the					
	objective has a diame 1) 12.03x10 ⁻⁵ rad	eter of 0.8cm. Find th	te limiting angle of res 3) 12.03x10 ⁻⁷ rad	solution. 4) 120.3x10 ⁻⁷ rad					
45.	*		· · · · · · · · · · · · · · · · · · ·	,					
	A parallel beam of light of wavelength 400nm falls on a narrow slit and the resulting diffraction pattern is observed on screen 0.5m away. It is observed that the first minimum is at a distance of 2mm from the centre of the screen. Find the width of the slit								
	1) 2cm	2) 2mm	3) $0.2 \times 10^{-4} \text{m}$	4) 2x10 ⁻⁴ m					
	PHYSICS								
46.	K_C for $A+B \Leftrightarrow 3C$ is 20 at 25°c, if a 2 liter vessel contains 1,2 and 4 mole of A, B and C								
	respectively, the reac		2) Proposed from min	aht to loft					
	 Proceed from left to Be at equilibrium 	rigiii	2) Proceed from rig4) Not occur	gir to terr					
47.	Solubility of AgCl in	0.1M NaCl is (ksn of							
- · •	1) 0.05M	2) 1.2x10 ⁻⁶ M	3) $2x10^{-5}$ M	4) 1.2x10 ⁻⁹ M					

SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP&TS

48.	A system absorbs 600J of energy and does worked equivalent to 400J of energy. The internal					
	energy change is					
	1) 1000J	2) 200J	3) 600J	4) 300J		
49.			e above equation, heat	of formation of ammonia is		
	1) 46 K. cal	2) -46 K cal	3) -23 k. cal	4) 23 K. cal		
50.	+1 oxidation state is s					
	1) B	2) Al	3) Ga	4) T <i>l</i>		
51.	The empirical formul	a of 'A' in the followi	ng reaction $B_2H_6 + NH_3$	$\xrightarrow{200^{0}C}$ 'A'		
	1) BNH	2) CH	3) BNH ₂	4) B ₂ NH		
52.	ν -					
	1) bent structure		2) trigonal planer stru			
	3) Linear structure 4) distorted tetrahedral structure The IUPAC name of the following compound is $CH_3 - CH(C_2H_5) - CH = CH - CH_3$					
53.				· ·		
				4) 5 – methyl pent 2 ene		
54.	Which of the followin					
	1) $CH_3 - CH_2^+$	2) $CH_2 = CH^+$	$3) CH \equiv C^+$	4) $C_6 H_5^+$		
55.	0.259 gm of an organic compound when treated by carius method gave 0.35 gm of BaSo ₄ .					
	percentage of sulphor	_				
	1) 16.23%	2) 18%	3) 18.5%	4) 42%		
56.	$B \leftarrow Alc.KOH, \Delta C_2H_5Cl$	$\xrightarrow{Z_n-C_u} A$. here con	npounds A and B are			
	1) CH_4 , C_2H_4	2) C_2H_4, C_2H_6	3) C_2H_6, C_2H_4	4) C_2H_6, C_2H_5OH		
<i>57</i> .	Which of the followin		, 2 0, 2 4	7 2 07 2 3		
	1) SO_2	2) Pb	3) NaCl	4) MIC		
58.	, 2	,	,	that the relative lowering of		
20.	_		weight of the solute is n	_		
	1) 60	2) 342	3) 189	4) 18		
59.	Of the following, the		apour pressure is	,		
	1) 10% Glucose	G	2) 10% Urea			
	3) 10% Sucrose		4) All of these have s	ame V.P.		
60.	The radius of the Na ⁺	is 95 Pm that of \overline{Cl} is	on is 181 pm. Predict t	hat coordination number of		
	Na^+					
	1) 4	2) 6	3) 8	4) unpredictable		
61.	1. What is the EMF of the cell?					
	$Zn_{(s)}/Zn_{(0.1M)}^{+2}//Sn_{(0.001)}^{+2}$	$(S_{n_{s}}) / S_{n_{s}}$. Given $E_{sn^{+2}}^{0} / S_{sn^{+2}}$	$Sn = -0.14v \text{ and } E^0_{Zn^{+2}/Zn}$	=-0.76V		
	1) 0.62	2) 0.56v	3) 1.12v	4) 0.31v		
62.	99% completion of a	first order reaction ta	kes place in 22 min. T	he time taken for 99.9%		
	completion of the rea					
	1) 33 min	2) 52 min	3) 56 min	4) 44 min		
63.	Gels is the mixture of		0) 11 11 1			
<i>-</i> 1	1) solid in liquid	2) liquid in solid	3) liquid in gas	4) Gas in liquid		
64.		•	les of group – 15 elemen			
	$1) NH_3 > ASH_3 > SbH$	$_3 > BiH_3 > PH_3$	$2) NH_3 > PH_3 > ASH$	$H_3 > SbH_3 > BiH_3$		
	$3) BiH_3 > SbH_3 > ASH$	$BiH_3 > SbH_3 > ASH_3 > PH_3 > NH_3$ 4) $PH_3 > BiH_3 > SbH_3 > ASH_3 > NH_3$				
65.	In which pair of ions	both the species conta	in s-s bond?			
	1) $S_2O_7^{-2}, S_2O_3^{-2}$	2) $S_4O_6^{-2}, S_2O_3^{-2}$	3) $S_4O_6^{-2}, S_2O_3^{-2}$	4) $S_4O_6^{-2}, S_2O_7^{-2}$		
66.	The correct order of a	. 0 2 3	· + 0 · 2 3			
	1) <i>HF</i> < <i>Hcl</i> > <i>HI</i> > <i>H</i>	O	2) <i>Hcl</i> < <i>HBr</i> < <i>HF</i> <	< HI		
	3) <i>HBr</i> > <i>Hcl</i> > <i>HI</i> > <i>HF</i>		4) <i>HI</i> > <i>HBr</i> > <i>Hcl</i> > <i>HF</i>			

SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP&TS							
67.	The number of lone pa	airs and bond pairs pr	resent on Xe of XeO3 mo	olecule			
	1) 1,3	2) 1,6	3) 4,3	4) 6,1			
68.							
	1) 4 <i>f</i>	2) 5g	3) 2d	4) 6P			
69.	An electron having marespectively	agnetic quantum num	ber+2 cannot have allow	wed 'n' and 'l' valves			
	1) $n = 4, l = 3$	2) $n = 3, l = 2$	3) $n = 4, l = 2$	4) $n = 2, l = 3$			
70.	The pair elements pos	ses almost the same p	roperties				
	1) <i>Eu – Yb</i>	2) <i>NB</i> – <i>Ti</i>	3) <i>Mo-w</i>	4) <i>Tc</i> – Re			
71.		ov of second period ele	ements vary with atomic	c number as			
	2-P R C F G						
	The element present a	-					
	1) Be,c	2) B,N	3) Be,O	4) Be,N			
72.	The correct order of b	ond energies in No, N	\mathbf{o}^{+} and No^{-}				
	1) $No^- > No > No^+$	2) $No > No^- > No^+$	3) $NO^+ > NO > NO^-$	4) $No^+ > No^- > No$			
73.	Dipole moment is shown 1) cis – 1,2 – Dichloro e 3) Trans – 2-3- dichloro	thene 2) Trans 1-2 dichloro ethene -2-pentene 4) Both 1 and 3					
74.	-	-	essure is (gram/lit				
	1) 1.78	2) 1.52	3) 1.96	4) 1.2			
<i>75</i> .	16 gm of oxygen occup	_					
	1) 0^{0} c	2) 30^{0} c	3) 273 ⁰ c	4) 273k			
76. be	The molarity of a solu	tion obtained by mixin	ng 750 ml of 0.5M HCl	with 250 ml of 2M HCl will			
	1) 0.875M	2) 1.0M	3) 1.75M	4) 0.097M			
77.	Oxidation numbers of	N in NH ₄ NO ₃ respect	ively are				
	1) $-3, +5$	2) +5, -3	3) -3, -3	4) +5, +5			
78.	H_2O_2 turns blacked lead paintings to white colour. In this reaction it oxidizes pbs to pbso ₄ . The number of moles of H_2O_2 needed to oxidize one mole of pbs is ?						
	1) 1	2) 2	3) 0.5	4) 4			
79.	The calcium phosphat	e slag is commercially	khown as				
	1) Thomas slag	2) Baeyer's slag	3) Wohler's slag	4) Matle			
80.	The electronic configuration of Godolonium (z=64)						
	1) $\{Xe\}4f^85d^96s^2$	2) $\{Xe\}4f^75d^16s^2$	3) $\{Xe\}4f^75d^56s^2$	4) $\{Xe\}4f^65d^56s^2$			
81.	Complex compounds	λ_{max} (absorbed)					
	$\mathbf{a}) \left[\mathrm{CrC} \ell_6 \right]^{-3}$	758 A°	$\mathbf{b}) \left[\mathrm{Cr} \left(\mathrm{NH}_{3} \right)_{6} \right]^{+3}$	465 A°			

 $\mathbf{c}) \left[\mathrm{Cr} \left(\mathrm{H}_2 \mathrm{O} \right)_6 \right]^{+3}$

1) a > b > c

3) b > c > a

694 A°

The correct order of CFSE of these complexes ions will be

2) a > c > b

4) a = b = c

SRIGAYATRI EDUCATIONAL INSTITUTIONS - AP & TS Identify 'Z' in the following series $C_2H_5-I \xrightarrow{Alc.KoH} X \xrightarrow{Br_2} Y \xrightarrow{KCN} Z$ 82.

1)
$$CH_3 - CH_2 - CN$$

2)
$$NCCH_2 - CH_2 - CN$$
 3) $BrCH_2 - CH_2 - CN$ 4) $BrCH = CHCN$

83. Incorrect order is

1) p^{Ka} value: p-nitro phenol < o-nitro phenol < m-nitrophenol

2) K_a – value : o-cresol < p-cresol < m-cresol

3) Acidic strength: o-fluoro phenol > o-chloro phenol > o-bromo phenol

4) Acidic strength: phenol > water > alcohol.

84.

For products A and B respectively are

Preparation of ether by acid dehydration of secondary (or) tertiary alcohol is not a suitable **85.** method due to

1) Presence of more basic alcohols

3) Formation of more stable carbonation

2) Steric hindrance

4) Formation of less stable carbocetia

86.

$$\overbrace{\bigcirc \qquad }^{COOH} \xrightarrow{SOC\ell_2} B \xrightarrow{NH_3} C \xrightarrow{NaOH} D$$

Identify the product 'D' in the following:

$$\bigcirc \\ \bigcirc \\ Br$$

$$SO_2NH$$
 O
 Br

87.

$$\begin{array}{c}
\stackrel{\text{CH}_2}{\longrightarrow} & \stackrel{(i)B_2H_b/THF}{\longrightarrow} A
\end{array}$$

1) Cyclohexane

3) Cyclo hexyl Methanol

2) Methyl Cyclohexene

4) Methyl cyclo hexane carbaldehyde

Which of the following is not a biopolymer **88.**

2) Nucleic acids

3) cellulose

4) Neoprene

'Liver' cells are rich in vitamins 89.

1) B,A

2) A,D

3) D.E

4) K.E

90. The compound is used as

1) antiseptic

2) antibiotic

3) analgesics

4) Pesticide

BIOLOGY

91. Name the prothallus is precussor to seed habit which is retained on the parent sporophyte

- 1) Male prothallus pteridophyte
- 2) Female prothallus pteridophyte
- 3) Both male & female prothallus pteridophyte
- 4) Male gametophyte pteridophyte

92. Branch of Zoology which deals with heredity and variations

1) Genetics

2) Evolution

3) Ecology

4) Ethology

93. How many carbon atoms are present in palmitic acid and Arachidonic acid respectively

1) 20 'C' & 16 'C'

2) 20 °C' & 20 °C'

3) 16 'C' & 16 'C'

4) 16 C & 20 C

94.

Identify the A,B,C places after above diagram (biome with respect annual rain fall

A B C
Temperate Coniferous Gra

Temperate Coniferous Grass Land
 Coniferous Temperate Grass Land

3 Coniferous Grass Land Temperate

4 Temperate Grass Land Coniferous

95. Chromosomal theory of Inheritance is experimentally proved by

1) Sutton and Boveri 2) T.H. Morgan

3) Bateson

4) Mendal

96. Match the Following

Syndrome Symptoms

Down's Syndrome
 Klinefelter's Syndrome
 Turner's Syndrome
 Eurrowed Tongue

1) 1-a, 2-c, 3-b 2) 1-a, 2-b, 3-c 3) 1-c, 2-c, 3-a

Exogenous spores are produced in

1) Penicillium 2) mucor

acor 3) Rhizopus

4) 1-c, 2-a, 3-b4) Euglena

98. Arrange the following sequentially to for sucked out milk from mammary gland

a. Alveoli

b. Ampulla

c. mammary tubules

d. Lacterious duct
1) a-c-e-b-d-f

e. mammary duct 2) a-c-e-d-b-f

3) a-c-d-b-e-f

f. Nipple

4) a-c-d-d-e-f

99. Which of the following is not a monocarpic plant

1) Rice

2) Maize

3) Wheat

4) Mango

97.