SRIGAYATRI EDUCATIONAL INSTITUTIONS

INDIA

Time: 3 Hours

Ś

NEET TOT GT-8

Max. Marks: 720 M

PHYSICS

In an experiment four quantities a, b, c and d are measured with percentage error 1%, 2%,			
3% and 4% respectively. Quantity P is calculated as follows $P = \frac{a^3b^2}{cd}$ then maximum possible			
% error in P is			
1) 7%	2) 4%	3) 14%	4) 10%
. The speed of a projectile at its maximum height is half of its initial speed the angle of			
projection is 1) 60 ⁰		2) 15 ⁰	3) 30^{0} 4) 45^{0}
3. A bullet is fired from a gun. The force on the bullet is given by $F = 600 - 2 \times 10^5 t$			
Where, F is in newton and t in seconds. The force on the bullet becomes zero as soon as it leaves the barrel. What is the average impulse imparted to the bullet?			
1) 9 N – s	2) zero	3) 1.8 N – s	4) 0.9 N – s
4. A body of mass 1 kg begins to move under the action of a time dependent force			
$\overline{F} = (2t\hat{i} + 3t^2\hat{j})N$, where \hat{i} and \hat{j} are unit vectors along x and y axis. What power will be			
developed by the forc	e at the time t?		
1) $(2t^3 + 3t^4)W$	2) $(2t^3 + 3t^5)W$	3) $(2t^2 + 3t^3)W$	4) None of these
5. The moment of inertia of a uniform circular disc of radius 'R' and mass M about an axis passing from the edge of the disc and normal to the disc is			
1) MR^2	$2) \frac{MR^2}{2}$	3) $\frac{3}{2}MR^2$	4) $\frac{7}{2}MR^{2}$
6. A light rod of length l has two masses m_1 and m_2 attached to its two ends. The moment of			
inertia of the system about an axis perpendicular to the rod and passing through the centre of mass is			
1) $\frac{m_1 m_2}{m_1 + m_2} l^2$	2) $\frac{m_1 + m_2}{m_1 m_2} l^2$	3) $(m_1 + m_2)l^2$	$4) \sqrt{m_1 m_2 l^2}$
7. What is the minimum energy required to launch a satellite of mass m from the surface of earth of radius 'R' in a circular orbit at an attitude of 2R.			
1) $\frac{GMm}{R}$	2) $\frac{GMm}{2R}$	3) $\frac{3}{4} \frac{GMm}{R}$	$4) \frac{5}{6} \frac{GMm}{R}$
8. If an object of mass <i>m</i> is taken from surface of earth to a point at a height $3R$ from the surface of earth, then work done against gravity is (R = Radius of earth)			
1) $\frac{3}{4}mgR$	2) $\frac{1}{2}mgR$	3) $\frac{1}{3}mgR$	$4) \frac{4}{3}mgR$
9. A string vibrates according to the equation $y = A \sin \frac{\pi x}{6} \cos 200\pi t$. Potential energy of a			
particle on string will be minimum at t=			
1) $\frac{7}{400}s$	2) $\frac{3}{400}s$	3) $\frac{5}{400}s$	4) All of these
	In an experiment four 3% and 4% respective % error in P is 1) 7% The speed of a project projection is 1) 60° A bullet is fired from Where, F is in newton leaves the barrel. What 1) 9 N - s A body of mass 1 kg H $\overline{F} = (2t\hat{i} + 3t^2\hat{j})N$, which developed by the force 1) $(2t^3 + 3t^4)W$ The moment of inertif passing from the edge 1) MR^2 A light rod of length \hat{I} inertia of the system at mass is 1) $\frac{m_1m_2}{m_1 + m_2}l^2$ What is the minimum earth of radius 'R' in 1) $\frac{GMm}{R}$ If an object of mass <i>m</i> of earth, then work d 1) $\frac{3}{4}mgR$ A string vibrates according particle on string will 1) $\frac{7}{400}s$	In an experiment four quantities a, b, c and 3% and 4% respectively. Quantity P is calcu % error in P is 1) 7% 2) 4% The speed of a projectile at its maximum hei- projection is 1) 60° A bullet is fired from a gun. The force on the Where, F is in newton and t in seconds. The leaves the barrel. What is the average imputed 1) 9 N - s 2) zero A body of mass 1 kg begins to move under the $\overline{F} = (2t\hat{i} + 3t^2\hat{j})N$, where \hat{i} and \hat{j} are unit vertice developed by the force at the time t? 1) $(2t^3 + 3t^4)W$ 2) $(2t^3 + 3t^5)W$ The moment of inertia of a uniform circular passing from the edge of the disc and normal 1) MR^2 2) $\frac{MR^2}{2}$ A light rod of length <i>l</i> has two masses m_1 and inertia of the system about an axis perpending mass is 1) $\frac{m_1m_2}{m_1 + m_2}l^2$ 2) $\frac{m_1 + m_2}{m_1m_2}l^2$ What is the minimum energy required to late earth of radius 'R' in a circular orbit at an at 1) $\frac{GMm}{R}$ 2) $\frac{GMm}{2R}$ If an object of mass <i>m</i> is taken from surface of earth, then work done against gravity is (1) $\frac{3}{4}mgR$ 2) $\frac{1}{2}mgR$ A string vibrates according to the equation particle on string will be minimum at t= 1) $\frac{7}{400}s$ 2) $\frac{3}{400}s$	In an experiment four quantities a, b, c and d are measured with perimeter of the second sec

- 10. A mass is suspended separately by two different springs in successive order then time periods is t_1 and t_2 respectively. If it is connected by both spring as shown in figure then time period is
 - $t_{\rm 0}\,$, the correct relation is

11. The bulk modulus of a spherical body is B. If it is subjected to uniform pressure P, the fractional decrease in radius is

1)
$$\frac{B}{3P}$$
 2) $\frac{3P}{B}$ 3) $\frac{P}{3B}$ 4) $\frac{P}{B}$

- 12. An air bubble of diameter 2 cm rises at the rate of 2.5 mm/s through a solution of density 2.25
g/cm³. Coefficient of viscosity of the solution is
1) 1960 poise4) 1760 poise1) 1960 poise2) 1860 poise3) 2000 poise4) 1760 poise
- 13. The cylindrical tube of a spray pump has radius R, one end of which has n fine holes, each of radius r. If the speed of the liquid in the tube is V, the speed of the ejection of the liquid through the holes is

1)
$$\frac{VR^2}{n^3r^2}$$
 2) $\frac{V^2R}{nr}$ 3) $\frac{VR^2}{n^2r^2}$ 4) $\frac{VR^2}{nr^2}$

- 14. The density of water at 20[°]C is 998 kg/m³ and at 40[°]C is 992 kg/m³. The coefficient of volume expansion of water is
- 1) 3×10⁻⁴/⁰ C
 2) 2×10⁻⁴/⁰ C
 3) 6×10⁻⁴/⁰ C
 4) 10⁻⁴/⁰ C
 15. Consider a compound slab consisting of two different materials having equal thicknesses and thermal conductivities 'K' and '2K' respectively. The equivalent thermal conductivity of the slab is

1)
$$\frac{2}{3}K$$
 2) $\sqrt{2}K$ 3) 3 K 4) $\frac{4}{3}K$

16. A gas is taken through the cycle $A \rightarrow B \rightarrow C \rightarrow A$ as shown. What is the net work done by the gas?

17. An insulated container contains 4 moles of an ideal diatomic gas at temperature T. Heat Q is supplied to this gas, due to which 2 moles of the gas are dissociated in to atoms but temperature of the gas remains constant then.

1)
$$Q = 2RT$$
 2) $Q = RT$ 3) $Q = 3RT$ 4) $Q = 4RT$

18. A cylindrical resonance tube open at both ends has a fundamental frequency 'f', in air. If half the length is dipped vertically in water, the fundamental frequency of the air column will be

1)
$$2f$$
 2) $\frac{3f}{2}$ 3) f 4) $\frac{f}{2}$

- 19. A train is moving at 30 m/s in still air. The frequency of train whistle 500 Hz. And the speed of sound is 345 m/s. What would be the apparent wavelengths in front of and behind the train if a wind of speed 10 m/s were blowing in the same direction as that in which the train is travelling.
 - 1) 0.65m, 0.73 m 2) 0.60m, 0.73 m 3) 0.65m, 0.78 m 4) 0.60m, 0.71m
- 20. A dielectric is placed in between the two parallel plates of a capacitor as shown in figure, the dielectric constant being 'K'. If the initial capacity is 'C', then the new capacity will be

21. A charge Q is situated at the corner of a cube, the electric flux passed through all the six faces of the cube is

1)
$$\frac{Q}{6\varepsilon_0}$$
 2) $\frac{Q}{8\varepsilon_0}$ 3) $\frac{Q}{\varepsilon_0}$ 4) $\frac{Q}{2\varepsilon_0}$

22. The potential at point A is

- 1) 10V 2) 11V 3) 16V 4) 4V
- 23. Three identical charges +q,-2q and +q are placed on the vertices of a regular hexagon of dimension *l* as shown in the given figure. The dipole moment of system is

4) Zero

24. In an ammeter 0.2% of main current passes through the galvanometer. If resistance of galvanometer is G, the resistance of ammeter will be

1)
$$\frac{1}{499}G$$
 2) $\frac{499}{500}G$ 3) $\frac{1}{500}G$ 4) $\frac{500}{499}G$

25. The magnetic field at centre, 'P' will be

2) 2ql

1) $\frac{\mu_0}{4\pi}$ 2) $\frac{\mu_0}{\pi}$ 3) $\frac{\mu_0}{2\pi}$ 4) $4\mu_0\pi$

1) ql

26. The magnetic force acting on a charged particle of charge $-2\mu C$ in a magnetic field of 2 T

acting in y direction, when the particle velocity is $(2\hat{i}+3\hat{j})\times 10^6 ms^{-1}$

1) 4N in z direction 2) 8N in y direction 3) 8N in z direction

4) 8N in -z direction

27. Electromagnets are made of soft iron because soft iron has

- 1) Low retentivity and high coercive force
- 2) High retentivity and high coercive force
- 3) Low retentivity and low coercive force
- 4) High retentivity and low coercive force
- 28. A diverging lens with magnitude of focal length 25 cm is placed at a distance of 15 cm from a converging lens of magnitude of focal length 20 cm. A beam of parallel light falls on the diverging lens. The final image formed is.
 - 1) Real and at a distance of 40 cm from convergent lens.
 - 2) Virtual and at a distance of 40 cm from convergent lens.
 - 3) Real and at a distance of 20 cm from convergent lens.
 - 4) Real and at a distance of 6 cm from the convergent lens
- 29. The interference pattern is obtained with two coherent light sources of intensity ratio 'n'. In the interference pattern the ratio $\frac{I_{\text{max}} I_{\text{min}}}{I_{\text{max}}}$ will be

the interference pattern, the ratio
$$\frac{-\max}{I_{\max} + I_{\min}}$$
 will

1)
$$\frac{\sqrt{n}}{n+1}$$
 2) $\frac{2\sqrt{n}}{n+1}$ 3) $\frac{\sqrt{n}}{(n+1)^2}$ 4) $\frac{2\sqrt{n}}{(n+1)^2}$

- **30.** In young's double slit experiment, the slits are 2mm apart and are illuminated by photons of two wavelengths $\lambda_1 = 12000 \stackrel{0}{A}$ and $\lambda_2 = 10000 \stackrel{0}{A}$ At what minimum distance from the common central bright fringe on the screen 2m from the slit will a bright fringe from one interference pattern coincide with a bright fringe from the other? 1) 4mm
 2) 3 mm
 3) 8 mm
 4) 6 mm
- 31. A concave lens with unequal radii of curvature made of glass $(\mu_g = 1.5)$ has a focal length of

40 cm. If it is immersed in a liquid of refractive index $\mu_1 = 2$ then

- 1) It behaves like a convex lens of 80 cm focal length
- 2) It behaves like a convex lens of 20 cm focal length
- 3) Its focal length becomes 60 cm
- 4) Its focal length remains unchanged
- 32. In a series LCR circuit, voltage applied is $V = 3\sin\left(314t + \frac{\pi}{6}\right)V$ and current from the supply

is $i = 2\sin\left(314t + \frac{\pi}{3}\right)A$ The wattles component of current in given voltage current supply is

1)
$$\sqrt{2}A$$
 2) $\frac{1}{\sqrt{2}}A$ 3) $\frac{1}{2}A$ 4) 2A

33. A metallic rod of length 'l' is tied to a string of length 2l and made to rotate with an angular speed ω on a horizontal table with one end of the string fixed. If there is a vertical magnetic field 'B' in the region, the e .m.f induced across the ends of the rods is.

1)
$$\frac{B\omega l^2}{2}$$
 2) $\frac{3B\omega l^2}{2}$ 3) $\frac{4B\omega l^2}{2}$ 4) $\frac{5B\omega l^2}{2}$

34. If the kinetic energy of a α-particle is increased to 16 times, the percentage change in the deBroglie wave length of the particle is

35. Some energy levels of a molecule are shown in the figure. The ratio of the wavelength $r = \lambda_1 / \lambda_2$ is given by

- 41. In a common emitter amplifier, the output resistance is 5000 Ω and the input resistance is 2000 Ω . If the peak value of signal voltage is 10 mV and $\beta = 50$, then peak value of output voltage is
 - 1) 125 V 2) 1.25 V 3) $5 \times 10^{-6} V$ 4) $2.5 \times 10^{-4} V$
- 42. A rod of length 10cm lies along the principal axis of a concave mirror of focal length 10cm in such a way that its end closer to the pole is 20cm a way from the mirror. The length of the image is
 - 1) 10cm 2) 15cm 3) 2.5 cm 4) 5 cm

43. Two radioactive nuclei P and Q in a given sample decay into a stable nucleus R. At time t=0, number of P species are $4N_0$ and that of Q are N_0 . Half – life of P(for conversion to R) is 1 minute where as that of Q is 2 minutes. Initially there are no nuclei of R present in the sample. When number of nuclei of P and Q are equal, the number of nuclei of R present in the sample would be

1)
$$2N_0$$
 2) $3N_0$ 3) $\frac{9N_0}{2}$ 4) $\frac{5N_0}{2}$

44. The wavelength λ_e of an electron and λ_p of a photon of same energy E are related by

1)
$$\lambda_p \alpha \sqrt{\lambda_e}$$
 2) $\lambda_p \alpha \frac{1}{\sqrt{\lambda_e}}$ 3) $\lambda_p \alpha \lambda_e^2$ 4) None of these

45. The area covered by a transmitting antenna of height 50 m is

- 1) $320\pi km^2$ 2) $1440\pi km^2$ 3) $640\pi km^2$ 4) $120\pi km^2$ <u>CHEMISTRY</u>
- 46. The ratio of radii of first bohr orbits of He^+ and Li^{+2} is1) 2:32) 3:23) 4:94) 9:4
- 47. Four electrons in an atom have the sets of quantum numbers as given below. Which electrons in at the highest energy level?

1)
$$n = 4, l = 0, m_l = 0, m_s = +\frac{1}{2}$$

3) $n = 3, l = 2, m_l = 0, m_s = +\frac{1}{2}$
4) $n = 4, l = 1, m_l = -1, m_s = -\frac{1}{2}$

48. If the volume of drop of water is 0.0018 ml then the number of water molecules present in two drops of water at room temperature is

1)
$$12.046 \times 10^{19}$$
2) 1.084×10^{18} 3) 4.84×10^{17} 4) 6.023×10^{23} 49.2.8 g of a gas at 1 atm and 273k occupies a volume of 2.24 litres. The gas can not be.
1) O_2 2) CO3) N_2 4) C_2H_4

50. If
$$\Delta H_f^0$$
 for H_2O_2 and H_2O are -188 kj/mole and -286 kj/mole, What will be the enthalpy change of the reaction $2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$

1) -196 kj/mole 2) -494 kj/mole 3) 146 kj/mole 4) -98 kj/mole
$$(4) -98 kj/mole$$

51. The equilibrium constant K_c for the following reaction at $842^{\circ}C$ is 7.90×10^{-3} . What is K_p at

- 1) Is neutral2) Is readily decomposed3) Is almost totally unionized4) Has a low boiling point
- 5) is almost totally unionized 4) has a low boiling point **56.** Which of the following is correct for a first order reaction

1)
$$t_{1/2} \alpha a$$
 2) $t_{1/2} \alpha \frac{1}{a}$ 3) $t_{1/2} \alpha a^0$

4) $t_{1/2} \alpha a^2$