
(9.30 PM - 12.30 PM)

Question Paper

Solutions
Corporate Office : Plot No-304, Kasetty Heights, Ayyappa Society Madhapur, Hyderabad-500081

PHYSICS

(SINGLE CORRECT ANSWER TYPE)
This section contains 20 multiple choice questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.
Marking scheme: +4 for correct answer, 0 if not attempted and $\mathbf{- 1}$ in all other cases.

1. Which of the following gives a reversible operation?
1)

2)

3)

4)

Ans: 3
Sol: A logic gate is reversible if we can recover input data from the output Eg. NOT gate
2. A 60 HP electric motor lifts an elevator having a maximum total load capacity of 2000 kg . If the frictional force on the elevator is 4000 N , the speed of the elevator at full load is close to: $\left(1 \mathrm{HP}=746 \mathrm{~W}, \mathrm{~g}=10 \mathrm{~ms}^{-2}\right)$

1) $1.9 \mathrm{~m} / \mathrm{s}$
2) $1.7 \mathrm{~m} / \mathrm{s}$
3) $2.0 \mathrm{~m} / \mathrm{s}$
4) $1.5 \mathrm{~m} / \mathrm{s}$

Ans: 1
Sol: $4000 \times V+m g \times V=P \quad \frac{60 \times 746}{4000+20000} V \quad V=1.86 \mathrm{~m} / \mathrm{s} \approx 1.9 \mathrm{~m} / \mathrm{s}$
3. A LCR circuit behaves like a damped harmonic oscillator. Comparing it with a physical spring mass damped oscillator having damping constant ' b ', the correct equivalence would be

1) $L \leftrightarrow m, C \leftrightarrow \frac{1}{K}, R \leftrightarrow b$
2) $L \leftrightarrow \frac{1}{b}, C \leftrightarrow \frac{1}{m}, R \leftrightarrow \frac{1}{k}$
3) $L \leftrightarrow K, C \leftrightarrow b, R \leftrightarrow m$
4) $L \leftrightarrow m, C \leftrightarrow K, R \leftrightarrow b$

Ans: 1
Sol: In damped oscillation

$m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=0$ \qquad
In the circuit $\quad-i R-L \frac{d i}{d t}-\frac{q}{c}=0$
$L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{c} \cdot q=0$
Comparing equation $(i) \&(i i)$

$$
\begin{equation*}
m=L, b=R, k=\frac{1}{c} \tag{ii}
\end{equation*}
$$

4. As shown in the figure, a bob of mass m is tied by a massless string whose other end portion is wound on a fly wheel (disc) of radius r and mass m. when released from rest the bob starts falling vertically. When it has covered a distance of h, the angular speed of the wheel will be

1) $\frac{1}{r} \sqrt{\frac{4 g h}{3}}$
2) $\frac{1}{r} \sqrt{\frac{2 g h}{3}}$
3) $r \sqrt{\frac{3}{2 g h}}$
4) $r \sqrt{\frac{3}{4 g h}}$

Ans: 1
Sol: $\quad m g h=\frac{1}{2} m v^{2}+\frac{1}{2} l \omega^{2}$

$$
v=\omega R(\text { no slipping })
$$

$m g h=\frac{1}{2} m \omega^{2} R^{2}+\frac{1}{2} \frac{m R^{2}}{2} \omega^{2} \quad m g h=\frac{3}{4} m \omega^{2} R^{2} \quad \omega=\sqrt{\frac{4 g h}{3 R^{2}}}=\frac{1}{R} \sqrt{\frac{4 g h}{3}}$
5. Three points particles of masses $1.0 \mathrm{~kg}, 1.5 \mathrm{~kg}$ and 2.5 kg are placed at three corners of right angle triangle of sides $4.0 \mathrm{~cm}, 3.0 \mathrm{~cm}$ and 5.0 cm as shown in the figure. The centre of mass of the system is at a point.

1) 0.6 cm right and 2.0 cm above 1 kg mass
2) 0.9 cm right and 2.0 cm above 1 kg mass
3) 2.0 cm right and 0.9 cm above 1 kg mass
4) 1.5 cm right and 1.2 cm above 1 kg mass

Ans: 2
Sol: Take 1 kg mass at origin

6. A parallel plate capacitor has plates of area A separated by distance ' d ' between them. It is filled with a dielectric which has a dielectric constant that varies as $k(x)=K(1+\alpha x)$ where ' x ' is the distance measured from one of the plates. If $(\alpha d) \ll 1$, the total capacitance of the system is best given by the expression

1) $\frac{A \in_{0} K}{d}\left[1+\left(\frac{\alpha d}{2}\right)^{2}\right]$
2) $\frac{A \in_{0} K}{d}\left[1+\frac{\alpha^{2} d^{2}}{2}\right]$
3) $\frac{A K \epsilon_{0}}{d}(1+\alpha d)$
4) $\frac{A K \in_{0}}{d}\left[1+\frac{\alpha d}{2}\right]$

Ans: 4
Sol: Capacitance of element $\frac{K \varepsilon_{0} A}{d x}$

Capacitance of element $C^{\prime}=\frac{K_{0}(1+\alpha x) \varepsilon_{0} A}{d x}$

$$
\sum \frac{1}{C^{\prime}}=\int_{0}^{d} \frac{d x}{K_{0} \varepsilon_{0} A(1+\alpha x)}
$$

Given $-\alpha d \ll 1 \quad \frac{1}{C}=\frac{1}{K_{0} \varepsilon_{0} A \alpha}\left(\alpha d-\frac{\alpha^{2} d^{2}}{2}\right)$
$\frac{1}{C}=\frac{d}{K_{0} \varepsilon_{0} A}\left(1-\frac{\alpha d}{2}\right)$
$C=\frac{K_{0} \varepsilon_{0} A}{d}\left(1+\frac{\alpha d}{2}\right)$
7. The time period of revolution of electron in its ground state orbit in a hydrogen atom is $1.6 \times 10^{-16} \mathrm{~s}$. The frequency of revolution of the electron in its first excited state $\left(\right.$ ins $\left.^{-1}\right)$ is

1) 7.8×10^{14}
2) 5.6×10^{12}
3) 6.2×10^{15}
4) 1.6×10^{14}

Ans: 1
Sol: $\quad T \propto \frac{r}{v} \propto \frac{n^{2}}{z} \times \frac{n}{z} \propto \frac{n^{3}}{z^{2}} \quad \frac{T_{1}}{T_{2}}=\frac{n_{1}^{3}}{n_{2}^{3}}=\frac{1}{8} \quad T_{2}=8 T_{1} \quad=8 \times 1.6 \times 10^{-16}=12.8 \times 10^{-16}$

$$
f_{2}=\frac{1}{12.8 \times 10^{-16}} \approx 7.8 \times 10^{14}
$$

8. The current I_{1} (in A) flowing through 1Ω resistor in the following circuit is

1) 0.2
2) 04
3) 0.5
4) 0.25

Ans: 1
Sol: $\quad I=\frac{1}{2.5}=0.4 A \quad i=\frac{1}{2}=0.2 A$

9. A satellite of mass m is launched vertically upwards with as initial speed u from the surface of the earth. After if reaches height $R(R=$ radius of the earth $)$, it ejects a rocket of mass $\frac{m}{10}$ so that subsequently the satellite moves in a circular orbit. The kinetic energy of the rocket is (G is the gravitational constant; M is the mass of the earth):

1) $\frac{3 m}{8}\left[u+\sqrt{\frac{5 G M}{6 R}}\right]^{2}$
2) $5 m\left(u^{2}-\frac{119}{200} \frac{G M}{R}\right)$
3) $\frac{m}{20}\left(u^{2}+\frac{113}{200} \frac{G M}{R}\right)$
4) $\frac{m}{20}\left[u-\sqrt{\frac{2 G M}{3 R}}\right]^{2}$ o, nlida

Ans: 3
Sol: $\quad \frac{-G M_{e} M}{R}+\frac{1}{2} M u^{2}=\frac{f-G M_{e} M}{2 R}+\frac{1}{2} M v^{2}$

$v=\sqrt{u^{2}-\frac{G M_{e}}{R}} \quad \frac{M}{10} V_{T}=\frac{9 M}{10} \sqrt{\frac{G M_{e}}{2 R}} \frac{M}{10} V_{r}=M\left(u^{2}-\frac{G M_{e}}{R}\right)$
Kinetic energy $=\frac{1}{2} \frac{M}{10}\left(V_{T}^{2}+V_{r}^{2}\right)=\frac{M}{20}\left(81 \frac{G M_{e}}{2 R}+100 u^{2}-100 \frac{G M_{e}}{R}\right)$
$=\frac{M}{20}\left(100 u^{2}-\frac{119 G M_{e}}{2 R}\right) \quad=5 M\left(u^{2}-\frac{119 G M_{e}}{200 R}\right)$
10. A long solenoid of radius R carries a time (t) - dependent current $I(t)=I_{0} t(1-t)$. A ring of radius 2 R is placed coaxially near its middle. During the time interval $0 \leq t \leq 1$, the inducted current $\left(I_{R}\right)$ and the induced EMF $\left(\mathrm{V}_{\mathrm{R}}\right)$ in the ring changes as:

1) Direction of I_{R} remains unchanged and V_{R} is maximum at $\mathrm{t}=0.5$
2) At $\mathrm{t}=0.5$ direction of I_{R} reverses and V_{R} is zero
3) Direction of I_{R} remains unchanged and V_{R} is zero at $\mathrm{t}=0.25$
4) At $\mathrm{t}=0.25$ direction of I_{R} reverses and V_{R} is maximum

Ans: 2
Sol
$I=I_{0} t-I_{0} t^{2} \quad \phi=B A \quad \phi=\mu_{0} n I A$
$V_{R}=-\frac{d \phi}{d t}=-\mu_{0} n A I_{0}(1-2 t) \quad V_{R}=0$ at $t=\frac{1}{2} \quad$ And $I_{R}=\frac{V_{R}}{\text { Resistance of loop }}$

11. The radius of gyration of a uniform rod of length l, about an axis passing through a point $\frac{l}{4}$ away from the centre of the rod, and perpendicular to it is

1) $\sqrt{\frac{7}{48}} l$
2) $\sqrt{\frac{3}{8}} l$
3) $\frac{1}{8} l$
4) $\frac{1}{4} l$

Ans: 1
Sol: $\frac{M L^{2}}{12}+M\left(\frac{L}{4}\right)^{2}=M K^{2}$

12. Two moles of an ideal gas with $\frac{C_{P}}{C_{V}}=\frac{5}{3}$ are mixed with 3 moles of another ideal gas with $\frac{C_{P}}{C_{V}}=\frac{4}{3}$. The values of $\frac{C_{P}}{C_{V}}$ for the mixture is

1) 1.50
2) 1.42
3) 1.47
4) 1.45

Ans: 2
sol: $\gamma_{\text {mixture }}=\frac{n_{1} C_{P_{1}}+n_{2} C_{P_{2}}}{n_{1} C_{V_{1}}+n_{2} C_{V_{2}}}=\frac{n_{1} \frac{\gamma_{1} R}{\gamma_{1}-1}+n_{2} \frac{\gamma_{2} R}{\gamma_{2}-1}}{\frac{n_{1} R}{\gamma_{1}-1}+\frac{n_{2} R}{\gamma_{2}-1}}$
no rearranging we get
$\frac{n_{1}+n_{2}}{\gamma_{\text {mix }}-1}=\frac{n_{1}}{\gamma_{1}-1}+\frac{n_{2}}{\gamma_{2}-1} ; \quad \frac{5}{\gamma_{\text {mix }}-1}=\frac{3}{1 / 3}+\frac{2}{2 / 3}$
$\frac{5}{\gamma_{\text {mix }}-1}=9+3=12 \Rightarrow \gamma_{\text {mixure }}=\frac{17}{12}=1+\frac{5}{12} ; \quad \gamma_{\text {mix }}=1.42$
13. A litre of dry air at STP expands adiabatically to a volume of 3litres. If $\gamma=1.40$, the work done by air is: $\left(3^{1.4}=4.6555\right)$ [Take air to be an ideal gas)

1) 100.8 J
2) 90.5 J
3) 60.7 J
4) 48 J

Ans: 2
Sol: $\quad P_{1}=1 \mathrm{~atm}, T_{1}=273 \mathrm{~K} \quad P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \quad P_{2}=P_{1}\left[\frac{V_{1}}{V_{2}}\right]^{\gamma} \quad=1 \operatorname{atm}\left(\frac{1}{3}\right)^{1.4}$

Closest ans is 90.5 J
14. If the magnetic field in a plane electromagnetic wave is given by $\vec{B}=3 \times 10^{-8} \sin \left(1.6 \times 10^{3} x+48 \times 10^{10} t\right) \hat{j} T$; then what will be the expression for the electric field?
1)
2) $\vec{E}=\left(3 \times 10^{-8} \sin \left(1.6 \times 10^{3} x+48 \times 10^{10} t\right) \hat{j} V / m\right)$
3) $\vec{E}=\left(3 \times 10^{-8} \sin \left(1.6 \times 10^{3} x+48 \times 10^{10} t\right) \hat{i} V / m\right)$
4)

Ans:1

Sol: $\frac{E_{0}}{B_{0}}=C$ (speed of light in vacuum)

$$
E_{0}=B_{0} C=3 \times 10^{-8} \times 3 \times 10^{8} \quad=9 N / C
$$

15. A polarizer-analyser set is adjusted such that the intensity of light coming out of the analyser is just 10% of the original intensity. Assuming that the polarizer -analyser set does not absorb any light, the angle by which of the analyser need to be rotated further to reduce the output intensity to be zero is
1) 45°
2) 71.6°
3) 90°
4) 18.4°

Ans: 4
Sol: $I=I_{0} \cos ^{2} \theta \quad \frac{I_{0}}{10}=I_{0} \cos ^{2} \theta$
$\cos \theta=\frac{1}{\sqrt{10}}=0.31<\frac{1}{\sqrt{2}}$ which is 0.707
So $\theta>45^{\circ}$ and $90-\theta<45^{\circ}$ so only one option is correct
i.e 18.4°
angle rotated should be $=90^{\circ}-71.6^{\circ}=18.4^{\circ}$
16. Speed of transverse wave of a straight wire (mass 6.0 g , length 60 cm and area of cross section $1.0 \mathrm{~mm}^{2}$) is $90 \mathrm{~ms}^{-1}$. If the young's modulus of wire in $16 \times 10^{11} \mathrm{Nm}^{-2}$ the extension of wire over its natural length is.

1) 0.03 mm
2) 0.02 mm
3) 0.01 mm
4) 0.04 mm

Ans: 1
Sol:
$V=\sqrt{\frac{T}{\mu}}$
$T=\mu v^{2}$

$\frac{\mu V^{2}}{A}=Y \frac{\Delta l}{l}$
den $\Delta l=\frac{\mu V^{2} l}{A Y}$
$\Delta l=0.03 \mathrm{~mm}$
17. Two infinite planes each with uniform surface charge density $+\sigma$ are kept in such a way that the angle but them is 30°. The electric field in the region shown between them is given by

1) $\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1-\frac{\sqrt{3}}{2}\right) \hat{y}-\frac{\hat{x}}{2}\right]$
2) $\frac{\sigma}{\varepsilon_{0}}\left[\left(1+\frac{\sqrt{3}}{2}\right) \hat{y}+\frac{\hat{x}}{2}\right]$

Ans: 1

E wwis srichaitanya.net, \boxtimes iconcohyd@srichaitanyacollegenet

Sol: $\quad \vec{E}=\frac{\sigma}{2 \varepsilon_{0}} \cos 60^{\circ}(-\hat{x})+\left[\frac{\sigma}{2 \varepsilon_{0}}-\frac{\sigma}{2 \varepsilon_{0}} \sin 60^{\circ}\right](\hat{y})$

$=\frac{\sigma}{2 \varepsilon_{0}}\left[\left(1-\frac{\sqrt{3}}{2}\right) \hat{y}-\frac{\hat{x}}{2}\right]$
18. If we need a magnification of 375 from a compound microscope of tube length 150 mm and an objective of focal length 5 mm , the focal length of the eye-piece, should be close to :

1) 12 mm
2) 33 mm
3) 22 m
4) 2 mm

Ans: 3
Sol: Case-I
If final image at least distance of clear vision
M.P. $=\frac{L}{f_{0}}\left(1+\frac{D}{f_{e}}\right) ; 375=\frac{150}{5}\left[1+\frac{25}{f_{e}}\right] \quad \frac{375}{30}=1+\frac{25}{f_{e}} \quad \frac{345}{30}=\frac{25}{f_{e}}$
$f_{e}=\frac{750}{345}=2.17 \mathrm{~cm} ; f_{e} \approx 22 \mathrm{~mm}$
Case-II
If final image is at infinity
$M . P=\frac{L}{f_{0}}\left(\frac{D}{f_{e}}\right)=375 \quad f_{e}=22 \mathrm{~mm}$
19. Visible light of wavelength $6000 \times 10^{-8} \mathrm{~cm}$ falls normally on a single slit and produces a diffraction pattern. It is found that the second diffraction minimum is at 60° from the central maximum. If the first minimum is produced at θ_{1}, then θ_{1}, is close to,

1) 25^{0}
2) 45^{0}
3) 20°
4) 30°

Ans: 1
Sol: For $2^{\text {nd }}$ minima $d \sin \theta=2 \lambda$
$\sin \theta=\frac{\sqrt{3}}{2}$ (given) $\Rightarrow \frac{\lambda}{d}=\frac{\sqrt{3}}{4}$ \qquad
So for ${ }^{\text {st }}$ minima is $d \sin \theta=\lambda$
$\sin \theta=\frac{\lambda}{d}=\frac{\sqrt{3}}{4}$ from equation (i)
$\theta=25.65^{\circ}$
$\theta \approx 25^{\circ}$
20. Consider a circular coil of wire carrying constant current I, forming a magnetic dipole.

The magnetic flux through an infinite plane that contains the circular coil and excluding the circular coil area is given by ϕ_{i}. The magnetic flux through the area of the circular coil is given by ϕ_{0}. Which of the following option is correct?

1) $\phi_{i}=-\phi_{0}$
2) $\phi_{i}>\phi_{0}$
3) $\phi_{i}<\phi_{0}$
4) $\phi_{i}=\phi_{0}$

Ans: 1
Sol: As magnetic field lines always form a closed loop, hence every magnetic field line creating magnetic flux in the inner region must be passing through the outer region. Since flux in two regions are in opposite direction

$$
\therefore \phi_{i}=-\phi_{0}
$$

(NUMERCAL VAWE TYPE)

This section contains 5 questions. Each question is numerical value. For each question, enter the correct numerical value(in decimal notation, truncated/rounded-off to second decimal place.(e.g. 6.25, 7.00, -0.33,-.30, 30.27,-127.30).
Marking scheme: $\mathbf{+ 4}$ for correct answer , 0 if not attempted and 0 in all other cases.
21. A particle $(\mathrm{m}=1 \mathrm{~kg})$ slides down a frictionless track (AOC) starting from rest at a point A (height 2 cm) After reaching C , the particle continues to move freely in air as a projectile. When it reaching its highest point P (height 1 m), the kinetic energy of the particle (in J) is:(Figure drawn is schematic and not to scale; take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

Ans: 10

Sol: $K E=P E l 1-P E_{2}=m g h_{1}-m g h_{2} \quad=1 \times 10 \times 2-1 \times 10 \times 1-10 J$
22. A Carnot engine operates between two reservoirs of temperature 900 K and 300 K . The engine performs 1200 J of work per cycle. The heat energy (in J) delivered by the engine to the low temperature reservoir, in a cycle is \qquad .

Ans: 600
Sol: $\quad \eta=\frac{W}{Q_{h}}=1-\frac{300}{900}=\frac{2}{3}$

$$
Q_{h}=\frac{3}{2} W=1800 \mathrm{~J} \quad Q_{L}=Q_{h}-Q=600 \mathrm{~J}
$$

23. A loop ABCDEFA of straight edges has six corner points $\mathrm{A}(0,0,0), \mathrm{B}(5,0,0), \mathrm{C}(5,5,0)$, $D(0,5,0), E(0,5,5)$ and $F(0,0,5)$. The magnetic field in this region is $\vec{B}=(3 \hat{\mathrm{i}}+4 \hat{\mathrm{k}}) \mathrm{T}$. The quantity of flux through the loop ABCDEFA (in Wb) is \qquad .

Ans: 175
Sol: $\quad \phi=\vec{B} \cdot \vec{A}=(3 \hat{i}+4 \hat{k}) \cdot(25 \hat{i}+25 \hat{k})$ $\phi=(3 \times 25)+(4 \times 25)=175$ weber

24. A beam of electromagnetic radiation of intensity $6.4 \times 10^{-5} \mathrm{~W} / \mathrm{cm}^{2}$ is comprised of wavelength, $\lambda=310 \mathrm{~nm}$. It falls normally on a metal(work function $\varphi=2 \mathrm{eV}$) of surface area $1 \mathrm{~cm}^{2}$. If one in 10^{3} photons ejects an electron, total number of electrons ejected in 1 s is $10^{\times}\left(\mathrm{hc}=1240 \mathrm{eVnm}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$, then x is \qquad
Ans: 11
Sol: Power incident $P=I \times A$
No=no.of photons incident / second

$$
\begin{aligned}
& n E_{p h}=I A \quad n=\frac{I A}{E_{p h}} \\
& n=\frac{I A}{\left(\frac{h c}{\lambda}\right)}=\frac{6.4 \times 10^{-5} \times 1}{\frac{1240}{310} \times 1.6 \times 10^{-19}}
\end{aligned}
$$

$n=10^{+14}$ per second
Since efficiency $=10^{-3}$
No.of electrons emitted $=10^{+11}$ per second.
$x=11$.
25. A non- isotropic solid metal cube has coefficients of linear expansion as: $5 \times 10^{-5} /{ }^{\circ} \mathrm{C}$ along the x -axis and $5 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ along the y and the z -axis. If coefficient of volume expansion of the solid $\mathrm{C} \times 10^{-6} /{ }^{\circ} \mathrm{C}$ then the value of C is \qquad
Ans: 60
Sol: $\quad V=2 \alpha_{2}+\alpha_{1}=10 \times 10^{-6}+5 \times 10^{-5}$

$$
=60 \times 10^{-6} I^{\circ} \mathrm{C}
$$

CHEMISTRY

(SINGLE CORRECT ANSWER TYPE)
This section contains 20 multiple choice questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.
Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.
26. The relative strength of interionic/intermolecular forces in decreasing order is:

1) ion-dipole $>$ dipole -dipole $>$ ion-ion
2) dipole-dipole $>$ ion - dipole $>$ ion - ion
3) ion-ion $>$ ion -dipole $>$ dipole - dipole
4) ion-dipole $>$ ion-ion $>$ dipole-dipole

Ans: 3
Sol: Ion - ion interactions are the strongest type
27. Oxidation number of potassium in $\mathrm{K}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}_{2}$ and KO_{2}, respectively is:

1) $+1,+2$ and +4
2) $+1,+4$ and +2
3) $+2,+1$ and $+\frac{1}{2}$
4) $+1,+1$ and +1

Ans: 4
Sol: Potassium, being an alkali metal has the same oxidation state of +1 in all the three compounds given.
28. At $35^{\circ} \mathrm{C}$, the vapour pressure of CS_{2}, is 512 mm Hg and that of acetone is 344 mm Hg . A solution of CS_{2} in acetone has a total vapour pressure of 600 mm Hg . The false statement amongst the following is:

1) CS_{2} and acetone are less attracted to each other than to themselves
2) heat must be absorbed in order to produce the solution at $35^{\circ} \mathrm{C}$
3) Raoult's law is not obeyed by this system
4) a mixture of $100 \mathrm{~mL} \mathrm{CS}_{2}$ and 100 mL acetone has a volume of $<200 \mathrm{~mL}$

Ans: 4
Sol: A mixture of acetone and CS_{2} exhibits positive deviation from ideal behaviour. This should lead to $\Delta \mathrm{V}_{\text {mix }}=+$ ve. So option (d) is incorrect
29. The atomic radius of Ag is closest to:

1) Ni
2) Cu
3) Au
4) Hg

Ans: 3

Sol: 4 d series elements and corresponding 5 d series elements have similar atomic radii as a consequence of lanthanoid contraction. This results in Au having the closest atomic radius to Ag .
30. The dipole moments of $\mathrm{CCl}_{4}, \mathrm{CHCl}_{3}$ and CH_{4} are in the orders:

1) $\mathrm{CH}_{4}<\mathrm{CCl}_{4}<\mathrm{CHCl}_{3}$
2) $\mathrm{CHCl}_{3}<\mathrm{CH}_{4}=\mathrm{CCl}_{4}$
3) $\mathrm{CH}_{4}=\mathrm{CCl}_{4}<\mathrm{CHCl}_{3}$
4) $\mathrm{CCl}_{4}<\mathrm{CH}_{4}<\mathrm{CHCl}_{3}$

Ans: 3
Sol: CHCl_{3} is the only polar compound given among the two.

$$
\mathrm{CH}_{4}=\mathrm{CCl}_{4}<\mathrm{CHCl}_{3}
$$

31. In comparison to the zeolite process for the removal of permanent hardness, the synthetic resin method is:
1) less efficient as the resins cannot be regenerated
2) more efficient as it can exchange only cations
3) less efficient as it exchanges only anions
4) more efficient as it can exchange both cations as well as anions

Ans: 4
Sol: Synthetic resins are advantageous for removal of permanent hardness as they exchange both cations and anions.
32. Among the following statements that which was not proposed by Dalton was

1) chemical reactions involve reorganization of atoms. These are neither created nor destroyed in a chemical reaction.
2) when gases combine or reproduced in a chemical reaction they do so in a simple ratio by volume provided all gases are at the same T \& P.
3) matter consists of indivisible atoms.
4) all the atoms of a given element have identical properties including identical mass. Atoms of different elements differ in mass.

Ans: 2
Sol: (b) is Gay Lussac's law of combining gas volumes.
33. The increasing orders of pK_{b} for the following compounds will be:

1) (B) $<$ (C) $<$ (A)
2) $(\mathrm{B})<(A)<(C)$
3) (C) $<$ (A) $<$ (B)
4) $(A)<(B)<(C)$

Ans: 2
Sol: (B) is guanidine type and hence is the most basic followed by (A) which is an amidine which must be more basic than the simple secondary amine (C)

Therefore the order of pKa is $\mathrm{B}<\mathrm{A}<\mathrm{C}$
34. What is the product of following reaction?

1)

2)

3)

Ans:1
4)

Sol:

hept-4-yn oic acid

35. The number of orbitals associated with quantum numbers $n=5, m_{5}=+\frac{1}{2}$ is:

1) 11
2) 50
3) 25
4) 15

Ans: 3
Sol: $\quad \mathrm{n}=5 \Rightarrow$ possible orbitals $=\mathrm{n}^{2}=25 \Rightarrow$ there can be 25 electrons with $\mathrm{n}=5, \mathrm{~m}_{\mathrm{s}}=+\frac{1}{2}$
36. The purest form of commercial iron is:

1) wrought iron
2) pig iron
3) cast iron
4) scrap iron and pig iron

Ans: 1
Sol: Wrought iron is the purest form of commercial iron.
37. The theory that can completely/properly explain the nature of bonding in $\left[\mathrm{Ni}(\mathrm{Co})_{4}\right]$ is:

1) Werner's theory
2) Crystal field theory
3) Molecular orbital theory
4) Valence bond theory

Ans: 3
Sol: Bonding in metal carbonyls is completely explained by Molecular orbital theory.
38. The IUPAC name of the complex $\left[\mathrm{pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)\right] \mathrm{Cl}$ is:

1) Diammine(methanamine)chlorido platinum(II) chloride
2) Bisammine(methanamine)chlorido platinum(II) chloride
3) Diamminechlorido(aminomethane) platinum(II) chloride
4) Diamminechlorido(methanamine) platinum(II) chloride

Ans: 4
Sol: Diamminechlorido(methylamine)platinum(II) chloride
39. 1-methyl ethylene oxide when treated with an excess of HBr produces:
1)

2)

3)

4)

Ans: 3
Sol:

1,2-dibromo propane

40. Consider the following reaction

The product ' X ' is used

1) in proteins estimation as an alternative to ninhydrin
2) as food grade colourant
3) in laboratory test for phenols
4) in acid basetitration as an indicator

Ans: 4
Sol: The compound formed is methyl orange and is used as an acid-base indicator.

41. Math the following
i) Riboflavin
a) Beriberi
ii) Thiamine
b) Scurvy
iii) Pyridoxine
c) Cheilosis
iv) Ascorbic acid
d) Convulsions

1) (i) - (a) ; (ii) - (d); (iii) - (c) ; (iv) - (b)
2) (i) - (d) ; (ii) - (b); (iii) - (a) ; (iv) - (c)
3) (i) - (c) ; (ii) - (d); (iii) - (a) ; (iv) - (b)
4) (i) - (c) ; (ii) - (a); (iii) - (d) ; (iv) - (b)

Ans: 4
Sol: Riboflavin - cheilosis
Thiamine - beriberi
Pyridoxine - convulsions
Ascorbic acid - Scurvy
42. Given that the standard potential $\left(\mathrm{E}^{\mathrm{o}}\right)$ of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ are 0.34 V and 0.522 V respectively, the E^{o} of $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$is:

1) 0.182 V
2) -0.158 V
3) -0.182 V
4) +0.158 V

Ans: 4

Sol:

0.34 V

$$
1 \times \mathrm{E}_{\mathrm{Cu}^{2+} \mid \mathrm{Cu}^{+}}^{\mathrm{o}}+1 \times \mathrm{E}_{\mathrm{Cu}^{+} \mid \mathrm{Cu}}^{\mathrm{o}}=2 \times \mathrm{E}_{\mathrm{Cu}^{2+} \mid \mathrm{Cu}}^{\mathrm{o}} \Rightarrow \mathrm{E}_{\mathrm{Cu}^{2+} \mid \mathrm{Cu}^{+}}^{\mathrm{o}}=\frac{2 \times 0.34-0.522}{1}=0.158 \mathrm{~V}
$$

43. A solution of m-chloroaniline, m-chlorophenol and m-chlorobenzoic acid in ethyl acetate was extracted initially with a saturated solution of NaHCO_{3} to give fraction A . The left over organic phase was extracted with dilute NaOH solution to give fraction B . The final organic layer was labelled as fraction C. Fractions A, B and C contain respectively:
1) m-chlorophenol, m-chlorobenoic acid and m-chloroaniline
2) m-chlorobenzoic acid, m-chloroaniline and m-chlorophenol
3) m-chloroaniline, m-chlorobenzoic acid and m-chlorophenol
4) m-chlorobenzoic acid, m-chlorophenol and m-chloroaniline

Ans: 4
Sol:

44. The electron gain enthalpy (in $\mathrm{kJ} / \mathrm{mol}$) of fluorine, chlorine, bromine and iodine, respectively are:

1) $-333,-325,-349$ and -296
2) $-333,-349,-325$ and -296
3) $-349,-333,-325$ and -296
4) $-296,-325,-333$ and -349

Ans: 2
Sol: Electron gain enthalpy order: $\mathrm{Cl}>\mathrm{F}>\mathrm{Br}>\mathrm{I}$
45. Consider the following reaction:
a) $\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right) \xrightarrow{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}$
b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}(\mathrm{Br}) \mathrm{CH}_{3} \xrightarrow{\text { alc. } \mathrm{KOH}}$
c) $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}(\mathrm{Br}) \mathrm{CH}_{3} \xrightarrow{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{O}^{-} \mathrm{K}^{+}} \mathrm{d}\right)$

Which of these reaction(s) will not produce Saytzeff product?

1) a) ,c) and d)
2) d) only
3) b) and d)
4) c) only

Ans: 4
Sol: Reaction C) gives Hoffman product as the major product.
(NUMERICAL VALUE TYPE)
This section contains 5 questions. Each question is numerical value. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to second decimal place.(e.g. 6.25, 7.00, -0.33,-.30, 30.27,-127.30).
Marking scheme: $\mathbf{+ 4}$ for correct answer , $\mathbf{0}$ if not attempted and $\mathbf{0}$ in all other cases.
46. Two solutions, A and B , each of 100 L was made by dissolving 4 g of NaOH and 9.8 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water, respectively. The pH of the resultant solution obtained from mixing 40 L of solution A and 10 L of solution B is \qquad .

Ans: 10.6
Sol: $\quad \mathrm{pH}=14-\log \left[\frac{\frac{4}{40}}{100} \times 40-\frac{\frac{9.8}{98}}{100} \times 10 \times 2\right] \frac{1}{50}=10.6$
47. During the nuclear explosion, one of the products is ${ }^{90} \mathrm{Sr}$ with half life of 6.93 years, if $1 \mu \mathrm{~g}$ of ${ }^{90} \mathrm{Sr}$ was absorbed in the bones of a newly born baby in place of Ca , how much time, in years, is required to reduce it by 90% if it is not lost metabolically \qquad .

Ans: 23.00 to 23.03

Sol: $\quad \mathrm{t}=\frac{2.303}{\left(\frac{0.693}{6.93}\right)} \log \frac{100}{100-90}=2.303 \times 10=23.03 \mathrm{y}$
48. Chlorine reacts with hot and concentrated NaOH and produces compounds(X) and (Y). compound (X) gives white precipitate with silver nitrate solution. The average bond order between Cl and O atoms in (Y) is \qquad .

Ans: 1.66 to 1.67
Sol:

$$
3 \mathrm{Cl}_{2}(\mathrm{~g})+6 \mathrm{NaOH} \xrightarrow{\Delta} 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

(X) (Y)

Structure of anion of Y is

Bond order of $\mathrm{Cl}-\mathrm{O}$ bond $=1+\frac{2}{3}=1.666 \ldots=1.67$
So 1.66 to 1.67
49. The number of chiral carbons in chloramphenicol is \qquad
Ans: 2
Sol: Chloramphenicol has two chiral centres.

50. For the reaction $A(l) \rightarrow 2 B(g)$ $\Delta U=2.1 \mathrm{Kcal}, \Delta S=20 \mathrm{calK}^{-1}$ at 300 K. Hence ΔG is Kcal is \qquad .

Ans: -2.7
Sol:

$$
\begin{aligned}
& \mathrm{A}(\mathrm{l}) \longrightarrow 2 \mathrm{~B}(\mathrm{~g}) \\
& \Delta \mathrm{H}=\Delta \mathrm{U}+2 \mathrm{RT}=2100+2 \times 2 \times 300=3300 \mathrm{cal} \\
& \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}=3300-300 \times 20=-2700 \mathrm{cal}=-2.7 \mathrm{kcal}
\end{aligned}
$$

MATHEMATICS

(SINGLE CORRECT ANSNER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: $\mathbf{+ 4}$ for correct answer, 0 if not attempted and $\mathbf{- 1}$ in all other cases.

51. If $f(a+b+1-x)=f(x)$, for all x, where a and b are fixed positive real numbers, then $\frac{1}{a+b} \int_{a}^{b} x(f(x))+f(x+1) d x$ is equal to
1) $\int_{a+1}^{b+1} f(x) d x$
2) $\int_{a+1}^{b+1} f(x+1) d x$
3) $\int_{a-1}^{b-1} f(x+1) d x$
4) $\int_{a-1}^{b-1} f(x) d x$

Ans: 1
Sol: $\quad f(x+1)=f(a+b-x)$

$$
\begin{equation*}
I=\frac{1}{(a+b)} \int_{a}^{b} x(f(x)+f(x+1)) d x \tag{1}
\end{equation*}
$$

$I=\frac{1}{(a+b)} \int_{a}^{b}(a+b-x)(f(x+1)+f(x)) d x$.

From 1 and 2

$2 I=\int_{a}^{b}(f(x)+f(x+1)) d x$
$2 I=\int_{a}^{b} f(a+b-x) d x+\int_{a}^{b} f(x+1) d x$
$2 I=2 \int_{a}^{b} f(a+1) d x \Rightarrow I=\int_{a}^{b} f(x+1) d x$ $=\int_{a+1}^{b+1} f(x) d x$
52. let $\alpha \& \beta$ be two real roots of the equation $(k+1) \tan ^{2} x-\sqrt{2} \cdot \lambda \tan x=(1-k)$, where $k(\neq-1)$ and λ are real numbers. If $\tan ^{2}(\alpha+\beta)=50$ then a value of λ is:

1) 10
2) 5
3) $5 \sqrt{2}$
4) $10 \sqrt{2}$

Ans: 1
Sol: $\quad(k+1) \tan ^{2} x-\sqrt{2} \lambda \tan x+(k-1)=0$
$\tan \alpha+\tan \beta=\frac{\sqrt{2} \lambda}{k+1}$
$\tan \alpha \tan \beta=\frac{k-1}{k+1}$
$\tan (\alpha+\beta)=(k-1)=0 \frac{\frac{\sqrt{2} \lambda}{k+1}}{1-\frac{k-1}{k+1}}=\frac{\sqrt{2} \lambda}{2}=\frac{\lambda}{\sqrt{2}}$
$\tan ^{2}(\alpha+\beta)=\frac{\lambda^{2}}{2}=50 \quad \lambda=10$
53. Total number of 6-digit numbers in which only and all the five digits $1,3,5,7$ and 9 appear is:

1) 6 !
2) $\frac{5}{2}(6!)$
3) $\frac{1}{2}(6!)$
4) 5^{6}

Ans: 2
Sol: 1,3,5,7,9
For digit to repeat we have ${ }^{5} C_{1}$ choice
And six digits can be arrange in $\frac{\underline{6}}{\underline{1}}$ ways
Hence total such number $=\frac{5 \mid \underline{6}}{\underline{2}}$
54. If $\mathrm{y}=\mathrm{mx}+4$ is tangent to both the parabolas, $\mathrm{y}^{2}=4 \mathrm{x}$ and $\mathrm{x}^{2}=2 \mathrm{by}$, then b is equal to

1) -64
2) -32
3) -128
4) 128

Ans: 3
Sol: $y=m x+4$
$\mathrm{y}^{2}=4 \mathrm{x}$ tangent $y=m x+\frac{a}{m} \Rightarrow y=m x+\frac{1}{m}$
from (i) and (ii)

$$
4=\frac{1}{m} \Rightarrow m=\frac{1}{4}
$$

So line $y=\frac{1}{4} x+4$ is also tangent to parabola $x^{2}=2 b y$, so solve $x^{2}=2 b\left(\frac{x+16}{4}\right) \Rightarrow 2 x^{2}-b x-16 b=0 \Rightarrow D=0 \Rightarrow b^{2}-4 \times 2 \times(-16 b)=0$
$\Rightarrow b^{2}+32 \times 4 b=0 \quad b=-128, b=0$ (not possible)
55. Let α be a root of the equation $x^{2}+x+1=0$ and the matrix $A=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha^{4}\end{array}\right]$, then the matrix A^{31} is equal to
1)A
2) A^{2}
3) A^{3}
4) I_{3}

Ans: 3
Sol: $\quad A^{2}=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$\Rightarrow A^{4}=I \quad \Rightarrow A^{30}=A^{28} \times A^{3}=A^{3}$
56. If $y=y(x)$ is the solution of the differential equation, $e^{y}\left(\frac{d y}{d x}-1\right)=e^{x}$, such that $y(0)=0$, then $y(1)$ is equal to:

1) 2 e
2) $2+\log _{\mathrm{e}} 2$
3) $1+\log _{e} 2$
4) $\log _{e} 2$

Ans: 3
Sol: $\quad e^{y}=t \quad e^{y} \frac{d y}{d x}=\frac{d t}{d x}$
$I F=e^{\int-1 . d x}=e^{-x} \quad e^{y-x}=x+c$
Put $x=0, y=0$ then $\mathrm{c}=1 \quad e^{y-x}=x+1$
$y=x \times \ln (x+1) \quad$ at $x=1, y=1+\ln (2)$
57. If $\mathrm{y}(\alpha)=\sqrt{2\left[\frac{\tan \alpha+\cot \alpha}{1+\tan ^{2} \alpha}\right]+\frac{1}{\sin ^{2} \alpha}}, \alpha \in\left[\frac{3 \pi}{4}, \pi\right]$, then $\frac{\mathrm{dy}}{\mathrm{d} \alpha}$ at $\alpha=\frac{5 \pi}{6}$ is:

1) 4
2) $-\frac{1}{4}$
3) $\frac{4}{3}$
4) -4

Ans: 1
Sol: $y=\sqrt{\frac{2 \cos ^{2} \alpha}{\sin \alpha \cos \alpha}+\frac{1}{\sin ^{2} \alpha}}=\sqrt{2 \cot \alpha+\operatorname{cosec} \alpha}=|1+\cot \alpha|=-1-\cot \alpha$ $\frac{d y}{d \alpha}=\operatorname{cosec} 2 \Rightarrow\left(\frac{d y}{d \alpha}\right)$ at $\alpha=\frac{5 \pi}{6}$ will be $=4$
58. Let the function $\mathrm{f}:[-7,0] \rightarrow \mathrm{R}$ be continuous on $[-7,0]$ and differentiable on $(-7,0)$. If $f(-7)=-3$ and $f^{\prime}(x) \leq 2$ for all $x \in(-7,0)$, then for all such function $f, f(-1)+f(0)$ is in the interval:

1) $[-3,11)$
2) $(-\infty, 20]$
3) $(-6,20)$
4) $(-\infty, 11]$

Ans: 2

Sol: Lets use LMVT for $x \in[-7,-1]$
$\frac{f(-1)-f(-7)}{(-1+7)} \leq 2$
$\frac{f(-1)+3}{6} \leq 2 \Rightarrow f(-1) \leq 9$

Also use LMVT for $x \in[-7,0]$
$\frac{f(0)-f(-7)}{(0+7)} \leq 1$
$\frac{f(0)+3}{7} \leq 2 \Rightarrow f(0) \leq 11 \quad \therefore f(0)+f(-1) \leq 20$
59. A vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k},(\alpha, \beta \in R)$ lies in the plane of the vectors $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}+4 \hat{k}$. If \vec{a} bisects the angle between \vec{b} and \vec{c}. Then

1) $\vec{a} \cdot \hat{i}+1=0$
2) $\vec{a} \cdot \hat{i}+3=0$
3) $\vec{a} \cdot \hat{k}+4=0$
4) $\vec{a} \cdot \hat{k}+2=0$

Ans: 4
Sol: angle bisector can be $\vec{a}=\vec{a}=\lambda(\hat{b}+\hat{c}) \operatorname{or} \vec{a}=\mu(\hat{b}-\hat{c})$
$\vec{a}=\lambda\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}+\frac{\hat{i}+\hat{j}+4 \hat{k}}{3 \sqrt{2}}\right)=\frac{\lambda}{3 \sqrt{2}}[3 \hat{i}+3 \hat{j}+\hat{i}-\hat{j}+4 \hat{k}]=\frac{\lambda}{3 \sqrt{2}}[4 \hat{i}+2 \hat{j}+4 \hat{k}]$
Compare with $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$
$\frac{2 \lambda}{3 \sqrt{2}}=2 \Rightarrow \lambda=3 \sqrt{2}$
$\vec{a}=4 \hat{i}+2 \hat{j}+4 \hat{k}$
Not in option so now consider $\vec{a}=\mu\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}-\frac{\hat{i}-\hat{j}+4 \hat{k}}{3 \sqrt{2}}\right)$
$\vec{a}=\frac{\mu}{3 \sqrt{2}}(3 \hat{i}+3 \hat{j}-\hat{i}+\hat{j}-4 \hat{k}) \quad=\frac{\mu}{3 \sqrt{2}}(2 \hat{i}+4 \hat{j}-4 \hat{k})$
Compare with $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$

$$
\begin{aligned}
& \frac{4 \mu}{3 \sqrt{2}}=2 \Rightarrow \mu=\frac{3 \sqrt{2}}{2} \quad \vec{a}=\hat{i}+2 \hat{j}-2 \hat{k} \\
& \vec{a} \cdot \hat{k}+2=0 \quad-2+2=0
\end{aligned}
$$

60. If the distance between the foci of an ellipse is 6 and the distance between its directrices is 12 , then the length of its latus rectum is:
1) $\sqrt{3}$
2) $3 \sqrt{2}$
3) $\frac{3}{\sqrt{2}}$
4) $2 \sqrt{3}$

Ans: 2
Sol: $2 a e=6 \quad$ and $\quad \frac{2 a}{e}=12 \quad \Rightarrow a e=3 \quad$ and $\quad \frac{a}{e}=6 \quad \Rightarrow a^{2}=18$
$\Rightarrow b^{2}=a^{2}-a^{2} e^{2}=18-9=9 \Rightarrow L . R=\frac{2 b^{2}}{a}=\frac{2 \times 9}{3 \sqrt{2}}=3 \sqrt{2}$
61. The greatest positive integer k , for which $49^{k}+1$ is a factor of the sum $49^{125}+49^{124}+\ldots \ldots .+49^{2}+49+1$, is

1) 65
2) 32
3) 60
4) 63

Ans: 4
Sol: $\frac{(49)^{126}-1}{48}=\frac{\left((49)^{63}+1\right)\left(49^{63}-1\right)}{48}$
62. Let P be a plane passing through the points $(2,1,0),(4,1,1)$ and $(5,0,1)$ and R be any point $(2,1,6)$. Then the image of R in the plane P is:

1) $(6,5,-2)$
2) $(6,5,2)$
3) $(4,3,2)$
4) $(3,4,-2)$

Ans: 1
Sol: Plane is $x+y-2 z=3 \Rightarrow \frac{x-2}{1}=\frac{y-1}{1}=\frac{z-6}{-2}=\frac{-2(2+1-12-3)}{6} \Rightarrow(x, y, z)=(6,5,-2)$
63. If the system of linear equations

$$
\begin{aligned}
& 2 x+2 a y+a z=0 \\
& 2 x+3 b y+b z=0 \\
& 2 x+4 c y+c z=0
\end{aligned}
$$

Where $a, b, c \in R$ are non-zero and distinct; has non-zero solution, then,

1) $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
2) a,b,c are in A.P
3) a, b, c are in G.P
4) $a+b+c=0$

Ans: 1

Sol: For non-zero solution

$$
\begin{aligned}
& \left|\begin{array}{lll}
2 & 2 a & a \\
2 & 3 b & b \\
2 & 4 c & c
\end{array}\right|=0 \quad\left|\begin{array}{lll}
1 & 2 a & a \\
1 & 3 b & b \\
1 & 4 c & c
\end{array}\right|=0 \\
& (3 b c-4 b c)-(2 a c-4 a c)+(2 a b-3 a b)=0 \\
& -b c+2 a c-a b=0 \\
& a b+b c=2 a c \\
& \text { a,b,c in H.P } \\
& \Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text { in A.P. }
\end{aligned}
$$

64. The area of the region, enclosed by the circle $x^{2}+y^{2}=2$ which is not common to the region bounded by the parabola $y^{2}=x$ and the straight line $y=x$, is:
1) $\frac{1}{6}(24 \pi-1)$
2) $\frac{1}{6}(12 \pi-1)$
3) $\frac{1}{3}(6 \pi-1)$
4) $\frac{1}{3}(12 \pi-1)$

Ans: 2

Sol: Total area - enclosed area

$$
2 \pi-\int_{0}^{1} \sqrt{x}-x d x
$$

$$
2 \pi-\left(\frac{2 x^{3 / 2}}{3}-\frac{x^{2}}{2}\right)_{0}^{1} 2 \pi-\left(\frac{2}{3}-\frac{1}{2}\right) \Rightarrow 2 \pi-\left(\frac{1}{6}\right) \Rightarrow \frac{12 \pi-1}{6}
$$

65. The logical statement $(p \Rightarrow q) \wedge(q \Rightarrow \sim p)$ is equivalent to:
1) $\sim \mathrm{q}$
2) $\sim p$
3) p
4) q

Ans: 2
Sol:

p	q	$p \rightarrow q$	$\sim p$	$q \rightarrow \sim p$	$(p \rightarrow q) \wedge(p \rightarrow \sim q)$
T	T	T	F	F	F
T	F	F	F	T	F
F	T	T	T	T	T
F	F	T	T	T	T

Cleary $(p \rightarrow q) \wedge(q \rightarrow \sim p)$ is equivalent to $\sim p$
66. An unbiased coin is tossed 5 times. Suppose that a variable X is assigned the value k when k consecutive heads are obtained for $\mathrm{k}=3,4,5$, other wise X takes the value -1 .The expected value of X, is:

1) $\frac{1}{8}$
2) $-\frac{1}{8}$
3) $\frac{3}{16}$
4) $-\frac{3}{16}$

Ans: 1
Sol:

k	0	1	2	3	4	5
$\mathrm{P}(\mathrm{k})$	$\frac{1}{32}$	$\frac{12}{32}$	$\frac{11}{32}$	$\frac{5}{32}$	$\frac{2}{32}$	$\frac{1}{32}$

$\mathrm{k}=$ no. of times head occur consecutively
Now expectation

$$
=\sum x P(k)=(-1) \times \frac{1}{32}+(-1) \times \frac{12}{32}+(-1) \times \frac{11}{32}+3 \times \frac{5}{32}+4 \times \frac{2}{32}+5 \times \frac{1}{32}=+\frac{1}{8}
$$

67. Let $x^{k}+y^{k}=a^{k},(a, k>0)$ and $\frac{d y}{d x}+\left(\frac{y}{x}\right)^{\frac{1}{3}}=0$, then K is
1) $\frac{1}{3}$
2) $\frac{2}{3}$
3) $\frac{4}{3}$
4) $\frac{3}{2}$

Ans: 2
Sol: $\quad k \cdot x^{k-1}+k \cdot y^{k-1} \frac{d y}{d x}=0 \quad \frac{d y}{d x}=-\left(\frac{x}{y}\right)^{k-1} \quad \frac{d y}{d x}+\left(\frac{x}{y}\right)^{k-1}=0 \quad k-1=\frac{1}{3} \quad k=1-\frac{1}{3}=\frac{2}{3}$
68. If $\operatorname{Re}\left(\frac{z-1}{2 z+i}\right)=1$, where $z=x+i y$, then the point (x, y) lies on a

1) straight line whose slope is $-\frac{2}{3}$
2) circle whose diameter is $\frac{\sqrt{5}}{2}$
3) straight line whose slope is $\frac{3}{2}$
4) circle whose centre is at $\left(-\frac{1}{2},-\frac{3}{4}\right)$

Ans: 2
Sol: $\quad z=x+i y$
$\left(\frac{z-1}{2 z+i}\right)=\frac{(x-1)+i y}{2(x+i y)+i}=\frac{(x-1)+i y}{2 x+(2 y-1) i} \times \frac{2 x-(2 y+1) i}{2 x-(2 y+1)}$
$\operatorname{Re}\left(\frac{z+1}{2 z+i}\right)=\frac{2 x(x-1)+y(2 y+1)}{(2 x)^{2}+(2 y+1)^{2}}=1$
$\Rightarrow 2 x^{2}+2 y^{2}-2 x+y=4 x^{2}+4 y^{2}+4 y+1 \quad \Rightarrow 2 x^{2}+2 y^{2}+2 x+3 y+1=0$
$\Rightarrow x^{2}+y^{2}+x+\frac{3}{2} y+\frac{1}{2}=0 \quad$ circle with centre $\left(-\frac{1}{2}-\frac{3}{4}\right)$
$r=\sqrt{\frac{1}{4}+\frac{9}{16}-\frac{1}{2}}=\sqrt{\frac{4+9-8}{16}}=\frac{\sqrt{5}}{4}$
69. If $g(x)=x^{2}+x-1$ and $(g \circ f)(x)=4 x^{2}-10 x+5$, then $f\left(\frac{5}{4}\right)$ is equal to:

1) $\frac{1}{2}$
2) $-\frac{1}{2}$
3) $-\frac{3}{2}$
4) $\frac{3}{2}$

Ans: 2

Sol:

$$
\begin{array}{ll}
g(f(x))=f^{2}(x)+f(x)-1 & g\left(f\left(\frac{5}{4}\right)\right)=4\left(\frac{5}{4}\right)^{2}-10 \cdot \frac{5}{4}+5=-\frac{5}{4} \\
g\left(f\left(\frac{5}{4}\right)\right)=f^{2}\left(\frac{5}{4}\right)+f\left(\frac{5}{4}\right)-1 & -\frac{5}{4}=f^{2}\left(\frac{5}{4}\right)+f\left(\frac{5}{4}\right)-1 \\
f^{2}\left(\frac{5}{4}\right)+f\left(\frac{5}{4}\right)+\frac{1}{4}=0 & \left(f\left(\frac{5}{4}\right)+\frac{1}{2}\right)^{2}=0 \quad f\left(\frac{5}{4}\right)=-\frac{1}{2}
\end{array}
$$

70. Five numbers are in A.P. whose sum is 25 and product is 2520 , if one of these five numbers is $-\frac{1}{2}$, then the greatest number amongst them is:
1) $\frac{21}{2}$
2) 16
3) 27
4) 7

Ans: 2
Sol: Let terms be $-2 d, a-d, a, a+d, a+2 d \quad$ Sum $=25 \Rightarrow 5 a=25 \Rightarrow a=5$
Product $=2520 \quad(5-2 d)(5-d) 5(5+d)(5+d)=2520$
$\Rightarrow\left(25-4 d^{2}\right)\left(25-d^{2}\right)=504 \quad \Rightarrow 625-100 d^{2}-25 d^{2}+4 d^{4}=504$
$\Rightarrow 4 d^{4}-125 d^{2}+625-504=0$
$\Rightarrow 4 d^{4}-125 d^{2}+121=0 \quad \Rightarrow\left(d^{2}-1\right)\left(4 d^{2}-121\right)=0 \quad \Rightarrow d= \pm 1, \quad d= \pm \frac{11}{2}$
$d= \pm 1$, does not give $\frac{-1}{2}$ as a term
$\therefore d=\frac{11}{2} \quad \therefore$ Largent term $=5+2 \mathrm{~d}=5+11=16$

(NUMERICAL VAWE TYPE)

This section contains 5 questions. Each question is numerical value. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to second decimal place.(e.g. 6.25, 7.00, -0.33, -.30, 30.27,-127.30).
Marking scheme: $\mathbf{+ 4}$ for correct answer, $\mathbf{0}$ if not attempted and $\mathbf{0}$ in all other cases.
71. Let $\mathrm{A}(1,0), \mathrm{B}(6,2)$ and $\mathrm{C}\left(\frac{3}{2}, 6\right)$ be the vertices of a triangle ABC . If P is a point inside the $\triangle \mathrm{ABC}$ such that $\triangle \mathrm{APC}, \triangle \mathrm{APB} \& \triangle \mathrm{BPC}$ have equal areas, then the length of the line segment PQ , where Q is the point $\left(-\frac{7}{6},-\frac{1}{3}\right)$ is \qquad
Ans: $P Q=5$
Sol: P will be centroid of $\triangle A B C$
$P\left(\frac{17}{6}, \frac{8}{3}\right) \Rightarrow P Q=\sqrt{\left(\frac{24}{6}\right)^{2}+\left(\frac{9}{3}\right)}=5$
72. If the variance of the first ' n ' natural numbers is 10 and the variance of the first ' m ' even natural numbers is 16 , then $\mathrm{m}+\mathrm{n}$ is equal to \qquad .
Ans: 18
Sol: $\quad \operatorname{Var}(1,2, \ldots \ldots ., n)=10 \Rightarrow \frac{1^{2}+2^{2}+\ldots \ldots .+n^{2}}{n}-\left(\frac{1+2+\ldots \ldots+n}{n}\right)^{2}=10$

$$
\begin{aligned}
& \Rightarrow \frac{(n+1)(2 n+1)}{6}-\left(\frac{n+1}{2}\right)^{2}=10 \\
& \Rightarrow n^{2}-1=120 \quad \Rightarrow n=11 \\
& \operatorname{Var}(2,4,6, \ldots \ldots, 2 m)=16 \Rightarrow \operatorname{var}(1,2, \ldots ., m)=4 \\
& \Rightarrow m^{2}-1=48 \Rightarrow m=7 \Rightarrow m+n=18
\end{aligned}
$$

73. $\lim _{x \rightarrow 2} \frac{3^{x}+3^{3-x}-12}{3^{\frac{-x}{2}}-3^{1-x}}$ is equal to \qquad .

Ans: 36
Sol: $\quad \lim _{x \rightarrow 2} \frac{3^{x}+3^{3-x}-12}{3^{-x / 2}-3^{1-x}} \Rightarrow \lim _{x \rightarrow 2} \frac{3^{2 x}-12.3^{x}+27}{3^{x / 2}-3}$
$=\lim _{x \rightarrow 2} \frac{\left(3^{8}-9\right)\left(3^{8}-3\right)}{\left(3^{8 / 2}-3\right)}$
$=\lim _{x \rightarrow 2} \frac{\left(3^{x / 2}+3\right)\left(3^{x / 2}-3\right)\left(3^{x}-3\right)}{\left(3^{x / 2}-3\right)}$
$=36$
74. If the sum of the coefficients of all even powers of x in the product $\left(1+x+x^{2}+\ldots . .+x^{2 n}\right)\left(1-x+x^{2}-x^{3}+\ldots .+x^{2 n}\right)$ is 61 , then n is equal to \qquad .
Ans: 30
Sol: Let $\left(1-x+x^{2} \ldots ..\right)\left(1+x+x^{2} \ldots ..\right)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$.
Put $\mathrm{x}=1$

$$
\begin{equation*}
1(2 n+1)=a_{0}+a_{1}+a_{2}+\ldots . . a_{2 n} \tag{i}
\end{equation*}
$$

Put $\mathrm{x}=-1$
$(2 n+1) \times 1=a_{0}-a_{1}+a_{2}+\ldots a_{2 n}$
From (i) + (ii)
$4 n+2=2\left(a_{0}+a_{2}+\ldots\right)$
$=2 \times 61$
$\Rightarrow 2 n+1=61 \Rightarrow n=30$
75. Let S be the set of points where the functions $f(x)=|2-|x-3||, x \in R$, is not differentiable. Then $\sum_{x \in S} f(f(x))$ is equal to
Ans: 3
Sol: $\quad f(x)=|2-|x-3||$
F is not differentiable at

$$
x=1,3,5 \Rightarrow \sum_{x \in s} f(f(x))=f(f(1))+f(f(3))+f(f(5))=f(0)+f(2)+f(10)=1+1+1=3
$$

Prepared by

Sri Chaitanya Faculty

