

FINAL NEET(UG)-2020 EXAMINATION (Held On Sunday 13th SEPTEMBER, 2020)

	(,		
	BIOLOGY			EST	PAPER W	ITH ANS	WER
46.	 The transverse section of a plant shows following anatomical features: (a) Large number of scattered vascular bundles surrounded by bundle sheath. (b) Large conspicuous parenchymatous ground tissue. (c) Vascular bundles conjoint and closed. (d) Phloem parenchyma absent. Identify the category of plant and its part :- Dicotyledonous root Monocotyledonous stem 	50. Ans. 51.	Goblet cells of alimentary canal are modified from : (1) Compound epithelial cells (2) Squamous epithelial cells (3) Columnar epithelial cells (4) Chondrocytes (3) The QRS complex in a standard ECG represents: (1) Repolarisation of ventricles (2) Repolarisation of auricles (3) Depolarisation of auricles				
	(3) Monocotyledonous root		(4)	Depola	risation of v	ventricles	
	(4) Dicotyledonous stem	Ans.	(4)				
Ans. 47. Ans.	 Which of the following would help in prevention of diuresis ? (1) Decrease in secretion of renin by JG cells (2) More water reabsorption due to undersecretion of ADH (3) Reabsorption of Na⁺ and water from renal tubules due to aldosterone (4) Atrial natriuretic factor causes vasoconstriction 	52. Ans. 53.	In light reaction, plastoquinone facilitates the transfer of electrons from : (1) PS-I to ATP synthase (2) PS-II to Cytb ₆ f complex (3) Cytb ₆ f complex to PS-I (4) PS-I to NADP ⁺				
48 .	Which of the following statements is not		(2)	Ammoi	nia alone	-	
	correct ?		(3)	Nitrate	alone		
	(1) Genetically engineered insulin is produced in				nia and oxy	gen	
	E-Coli.	Ans.					
	 (2) In man insulin is synthesised as a proinsulin. (3) The proinsulin has an extra peptide called C-peptide. (4) The functional insulin has A and B chains linked together by hydrogen bonds. 	54.	Match the following with respect to meiosis:(a) Zygotene(i) Terminalization(b) Pachytene(ii) Chiasmata(c) Diplotene(iii) Crossing over(d) Diakinesis(iv) Synapsis				
Ans.	• •		Select the correct option from the following:				
49 .	Embryological support for evolution was			(a)	(b)	(c)	(d)
	disapproved by :			(ii)	(iv)	(iii)	(i)
	(1) Oparin		(2)	(iii)	(iv)	(i)	(ii)
	(2) Karl Ernst von Baer		(3)	(iv)	(iii)	(ii)	(i)
	(3) Alfred Wallace		(4)	(i)	(ii)	(iv)	(iii)
	(4) Charles Darwin	Ans.	(3)				
Anc	(2)	1					

Ans. (2)

(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	coption Colu (a) (b) (c) (c) (d) (d)	n. mn -I -15 pairs of gill eterocercal cause r Bladder bison sting (b) (iv) (iv) (iii) (iv)	Cole I slits (i) Tr dal fin (ii) C (iii) C (iv) C (c) (iii) (iv) (iv)	elect the correct ygon yclostomes Chondrichthyes Osteichthyes (d) (ii) (i)	58. Ans. 59.	theory of i (1) Morgar (3) Sutton (1) Match the (a) Inhibit activity	nheritance w n following : or of catalytic	vas done (2) Me (4) Bc	endel		
(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	Colu (a) 6 (b) Ha (c) Ai (c) Ai (d) Po (a (1) (i) (2) (ii (3) (ii (3) (ii (3) (ii (4) (iv (2))	mn -I -15 pairs of gill eterocercal cause r Bladder vison sting (b) (iv) (iv) (iii) (iv)	l slits (i) Tr dal fin (ii) C (iii) C (iv) C (c) (iii) (iv) (iv) (i)	ygon Yyclostomes Chondrichthyes Dsteichthyes (d) (ii)		 (1) Morgar (3) Sutton (1) Match the (a) Inhibit activity 	n following : or of catalytic	(2) Me (4) Bo	endel overi		
(a (h (a) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(a) 6 (b) Ha (c) Ai (d) Po (a (1) (i) (2) (ii (2) (ii (3) (ii (4) (iv (2)	-15 pairs of gill eterocercal cau r Bladder vison sting (b) (iv) (iv) (iii) (iv)	l slits (i) Tr dal fin (ii) C (iii) C (iv) C (c) (iii) (iv) (iv) (i)	ygon Yyclostomes Chondrichthyes Dsteichthyes (d) (ii)		(3) Sutton(1)Match the(a) Inhibit activity	following : or of catalytic	(4) Bc	overi		
(t (a (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	 (b) Ha (c) Ai (d) Po (a) (a) (1) (a) (2) (b) (2) (b) (3) (b) (4) (b) (2) 	eterocercal cause r Bladder bison sting (b) (iv) (iv) (iii) (iv)	dal fin (ii) C (iii) C (iv) C (c) (iii) (iv) (iv)	yclostomes Chondrichthyes Osteichthyes (d) (ii)		(1)Match the(a) Inhibit activity	or of catalytic				
(a (a (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(c) Ai (d) Po (a (1) (i) (2) (ii (2) (ii (3) (ii (4) (iv (2)	r Bladder ison sting (b) (iv) i) (iii) ii) (iv)	(iii) C (iv) C (c) (iii) (iv) (i)	Chondrichthyes Dsteichthyes (d) (ii)		Match the (a) Inhibit activity	or of catalytic	c (i)	Ricin		
(d (1) (2) (3) (4) (4) (4) (4)	(d) Po (a (1) (i) (2) (ii) (3) (ii) (4) (iv) (2)	a) (b) (iv) (iv) (iii) (iii)	(iv) C (c) (iii) (iv) (i)	Osteichthyes (d) (ii)	55.	(a) Inhibit activity	or of catalytic	c (i)	Ricin		
(1 (2 (3 (4) (4) (4) (4)	(a (1) (i) (2) (ii) (3) (ii) (4) (iv (2)	a) (b) (iv) (iii) i) (iii) (ii) (iv)	(c) (iii) (iv) (i)	(d) (ii)		activity	2				
(2 (3 (4 Ans. (2	(1) (i) (2) (ii) (3) (ii) (4) (iv) (2)	(iv) i) (iii) ii) (iv)	(iii) (i∨) (i)	(ii)							
(2 (3 (4 Ans. (2	(2) (ii (3) (ii (4) (iv (2)	i) (iii) ii) (iv)	(iv) (i)			(b) Posses	ss peptide bo	nds (ii)	Malonate		
(3 (4 Ans. (2	(3) (ii (4) (iv (2)	i) (iv)	(i)	(1)		(c) Cell w	all material i	n (iii) Chitin		
(4 Ans. (2	(4) (iv (2)			(ii)		fungi					
Ans. ((2)	*) (11)	(iii)	(i)		(d) Second	lary metaboli	te (iv) Collagen		
56 V	Whic		()	(-7		Choose the correct option from the following :					
JU . V	vvinc	h is the impo	ortant site of	f formation of		(a)	(b)	(c)	(d)		
g	glyco	proteins and gl	ycolipids in e	ukaryotic cells ?		(1) (ii)	(iii)	(i)	(iv)		
(1	(1) Pc	olysomes				(2) (ii)	(iv)	(iii)	(i)		
(2	(2) Er	ndoplasmic retio	culum			(3) (iii)	(i)	(iv)	(ii)		
(3	(3) Pe	eroxisomes				(4) (iii)	(iv)	(i)	(ii)		
(4	(4) Go	olgi bodies			Ans.	(2)					
Ans. (4	(4)				60.	Bilaterally symmetrical and acoelomate animals are					
57. N		-		biotechnology.		exemplifie	d by:				
(a	. ,	Bacillus	(i) Cloni	ng vector		(1) Annelia	la	(2) Cte	(2) Ctenophora		
		huringiensis				(3) Platyhe	lminthes	(4) As	Aschelminthes		
(t		Thermus		struction of	Ans.	•					
	a	quaticus		rDNA	61.	Floridean starch has structure similar to:					
(ecule		(1) Laminarin and cellulose					
(0		Igrobacterium	(111) DINA	Apolymerase		(2) Starch	and cellulose	2			
1.		umefaciens Salmonella	(i.r.) Curry	proteins		(3) Amylopectin and glycogen(4) Mannitol and algin					
(C	. ,	phimurium	(IV) Cry	proteins							
S	-	t the correct o	ntion from th	e following	Ans.	-					
	Jeiec (a		(c)	(d)	62.		ne correct :	statemen	it with regard to		
(*	(1) (ii		(i)	(ii)			(Gap 1) of ir		-		
	[1) (ii [2) (ii		(i) (iii)	(i)			r Division tal				
	(3) (iv		(ii)	(i) (ii)				-	ı takes place.		
	(4) (ii		(iv)	(i)			-	-	omponents takes		
Ans. (()	(-)			•	active, gr	rows but does not		
					Ans.		te its DNA.				
					1 113.	(-)			2		

CODE - H3

path to ouccess		RINSTITUTE RAJASTHAN)						CODE - H3					
63.				ch is rem	oved, it may live for	67.	In water hyacinth and w	ater lily, pollination takes					
		days because: the head holds a $1/3^{rd}$ of a nervous system while					place by :						
	(1)				•		(1) insects and water	(2) insects or wind					
			is situated	i along tr	ne dorsal part of its		(3) water currents only	(4) wind and water					
	(2)	body.	ra occomba	and and	dia of the coeleroach	Ans.	(2)						
	(2) the supra-oesophageal ganglia of the cockroach					68 .	Bt cotton variety that	was developed by the					
	are situated in ventral part of abdomen. (3) the cockroach does not have nervous system.						introduction of toxin gen	e of <i>Bacillus thuringiensis</i>					
	(3) the cockroach does not have hervous system.(4) the head holds a small proportion of a nervous				-		(Bt) is resistant to :						
	(-)				ed along the ventral		(1) Insect predators	(2) Insect pests					
		-	its body.				(3) Fungal diseases (4) Plant nematodes						
Ans.	(4)	I				Ans.	s. (2)						
64.	The enzyme enterokinase helps in conversion of :				s in conversion of :	69.	Select the correct staten	nent.					
	(1) pepsinogen into pepsin						(1) Insulin is associated w						
	(2) protein into polypeptides						(2) Glucocorticoids stimu						
	(3) trypsinogen into trypsin						(3) Glucagon is associate						
	(4) caseinogen into casein						(4) Insulin acts on pancre	eatic cells and adipocytes.					
Ans.	(3)	-					. (2)						
65 .	Match the following columns and select the correct				d select the correct	70.	Identify the basic amino	acid from the following.					
	opt	ion.					(1) Valine	(2) Tyrosine					
		Colum	n -I	C	Column - II		(3) Glutamic Acid	(4) Lysine					
	(a)	Organ o	f Corti	(i) (Connects middle	Ans.	(4)						
				e	ar and pharynx	71.	Flippers of Penguins and Dolphins are examples of:						
	(b)	Cochlea		(ii) C	Coiled part of the		(1) Natural selection						
					abyrinth		(2) Adaptive radiation						
	(c)	Eustachi	an tube	• • •	Attached to the		(3) Convergent evolution						
		-			val window		(4) Industrial melanism						
	(d)	Stapes		. ,	located on the	Ans.	(3)						
					asilar	72.		.L. Miller produced amino					
		(-)	A ->		nembrane		acids by mixing the follo	-					
	(1)	(a) (i)	(b) (ii)	(c) (i∨)	(d) (iii)		(1) CH_3 , H_2 , NH_3 and						
	(1)		(ii) (iii)	(iv) (i)	(iii) (iv)		(2) CH_4 , H_2 , NH_3 and	-					
		(iii)	(ii)	(iv)	(ii)		(3) CH_3 , H_2 , NH_4 and	-					
		(iv)	(ii)	(iv) (i)	(iii)		(4) CH_4 , H_2 , NH_3 and	water vapor at 600°C					
Ans.	• •			()	ζ,	Ans.	• •						
66 .	• •		e wrong s	tatement	with reference to	73.		mic sequence which is					
	tra	nsport of	f oxygen.				recognized by EcoRI is :						
	(1) Low pCO_2 in alveoli favours the formation of				rs the formation of		(1) 5' - GGATCC - 3'						
		•	noglobin.				3' - CCTAGG - 5'						
		-			moglobin is mainly		(2) 5' - GAATTC - 3'						
			to partial j				3' - CTTAAG - 5'						
					n interfere with O_2		(3) 5' - GGAACC - 3'						
		-	with haem	-	.1 6		3' - CCTTGG - 5'						
		-			vours the formation		(4) 5' - CTTAAG - 3'						
		ot oxyha	aemoglobir	٦.			3' - GAATTC - 5'						

Ans. (2)

Ans. (4)

CODE - H3

- **74.** Secondary metabolites such as nicotine, strychnine and caffeine are produced by plants for their :
 - (1) Effect on reproduction
 - (2) Nutritive value
 - (3) Growth response
 - (4) Defence action

Ans. (4)

- **75.** Presence of which of the following conditions in urine are indicative of Diabetes Mellitus ?
 - (1) Renal calculi and Hyperglycaemia
 - (2) Uremia and Ketonuria
 - (3) Uremia and Renal Calculi
 - (4) Ketonuria and Glycosuria

Ans. (4)

- **76.** Which of the following statements are true for the phylum-Chordata ?
 - (a) In Urochordata notochord extends from head to tail and it is present throughout their life.
 - (b) In Vertebrata notochord is present during the embryonic period only.
 - (c) Central nervous system is dorsal and hollow.
 - (d) Chordata is divided into 3 subphyla : Hemichordata, Tunicata and Cephalochordata.
 (1) (b) and (c) (2) (d) and (c)
 - (1) (b) and (c) (2) (d) and (c) (3) (c) and (a) (4) (a) and (b)

Ans. (1)

- **77.** Cuboidal epithelium with brush border of microvilli is found in :
 - (1) eustachian tube
 - (2) lining of intestine
 - (3) ducts of salivary glands
 - (4) proximal convoluted tubule of nephron

Ans. (4)

Ans

78. Match the following columns and select the correct option.

	Colum	ın - I		Column - II
(a)	Clostric	lium	(i)	Cyclosporin - A
	butylicu	ım		
(b)	Trichoc	lerma	(ii)	Butyric Acid
	polyspo	orum		
(c)	Monase	cus	(iii)	Citric Acid
	purpur	eus		
(d)	Asperg	illus niger	(iv)	Blood cholesterol
				lowering agent
	(a)	(b)	(c)	(d)
(1)	(iv)	(iii)	(ii)	(i)
(2)	(iii)	(iv)	(ii)	(i)
(3)	(ii)	(i)	(iv)	(iii)
(4)	(i)	(ii)	(iv)	(iii)
. (3)				

- **79.** Which of the following is correct about viroids ?
 - (1) They have free DNA without protein coat.
 - (2) They have RNA with protein coat.
 - (3) They have free RNA without protein coat.
 - (4) They have DNA with protein coat.

Ans. (3)

- **80.** The body of the ovule is fused within the funicle at:
 - (1) Chalaza (2) Hilum
 - (3) Micropyle (4) Nucellus

Ans. (2)

- **81.** The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of :
 - (1) 1 molecule of 4-C compound and 1 molecule of 2-C compound.
 - (2) 2 molecules of 3-C compound
 - (3) 1 molecule of 3-C compound
 - (4) 1 molecule of 6-C compound

Ans. (3)

82. Match the following columns and select the correct option.

	Colur	nn I	Column - II						
(a)	Eosinc	phils	(i)	Immune response					
(b)	Basop	hils	(ii)	Phagocytosis					
(c)	Neutro	ophils	(iii)	Release					
				histaminase,					
				destructive					
				enzymes					
(d)	Lympł	nocytes	(iv)	Release granules					
				containing					
				histamine					
	(a)	(b)	(c)	(d)					
(1)	(ii)	(i)	(iii)	(iv)					
(2)	(iii)	(iv)	(ii)	(i)					
(3)	(iv)	(i)	(ii)	(iii)					
(4)	(i)	(ii)	(iv)	(iii)					
(9)									

Ans. (2)

83. Which of the following hormone levels will cause release of ovum (ovulation) from the graffian follicle?(1) Low concentration of FSH

- (2) High concentration of Estrogen
- (3) High concentration of Progesterone
- (4) Low concentration of LH

Ans. (2)

path to encecess	CAREER INSTITUTE					CODE - H3
Ans. 85. Ans. 86.	 inspiration. (a) Contraction of diaphragm (b) Contraction of external inter-costal m (c) Pulmonary volume decreases (d) Intra pulmonary pressure increases (1) only (d) (2) (a) and (b) (3) (c) and (d) (4) (a), (b) and (d) 35. In which of the following techniques, the are transferred to assist those females who conceive? (1) GIFT and ICSI (2) ZIFT and IUT (3) GIFT and ZIFT (4) ICSI and ZIFT 				89. Ans. 90. Ans. 91. Ans. 92.	 Which of the following is the most abundant protein in the animals ? (1) Insulin (2) Haemoglobin (3) Collagen (4) Lectin (3) Which of the following pairs is of unicellular algae? (1) Chlorella and Spirulina (2) Laminaria and Sargassum (3) Gelidium and Gracilaria (4) Anabaena and Volvox (1) The plant parts which consist of two generations one within the other : (a) Pollen grains inside the anther (b) Germinated pollen grain with two male gametes
Ans. 87.	Match the fo option. (a) Placenta (b) Zona pe (c) Bulbo-ur (d) Leydig c (a) (1) (ii)	imetocytes ites blowing colum n-I flucida ethral glands cells (b) (iii)	nns and selec Column-II (i) Androge (ii) Human Gonado (iii) Layer o (iv) Lubrica Penis (c) (iv)	gametocytes t the correct ins Chorionic tropin (hCG) of the ovum tion of the (d) (i)	Ans. 93.	 (c) Seed inside the fruit (d) Embryo sac inside the ovule (1) (a) and (d) (2) (a) only (3) (a), (b) and (c) (4) (c) and (d) (1) Identify the incorrect statement. (1) Due to deposition of tannins, resins, oils etc., heart wood is dark in colour (2) Heart wood does not conduct water but gives mechanical support (3) Sapwood is involved in conduction of water and minerals from root to leaf (4) Sapwood is the innermost secondary xylem and is lighter in colour
Ans. 88. Ans.	 Thalass Haemop Phenylka Sickle ce 	(iii) (iv) (ii) correct match emia - X linko philia - Y linko etonuria - Aut ell anaemia - A	ed ed cosomal dom	ecessive trait,	94. Ans. 95. Ans.	By which method was a new breed 'Hisardale' of sheep formed by using Bikaneri ewes and Marino rams? (1) Inbreeding (2) Out crossing (3) Mutational breeding (4) Cross breeding (4) Some dividing cells exit the cell cycle and enter vegetative inactive stage. This is called quiescent stage (G ₀). This process occurs at the end of : (1) G_2 phase (2) M phase (3) G_1 phase (4) S phase (2/3)

path to enccess	CAREER INSTITUTE	B							CODE - H3			
96 .	Identify th	e correct	statement wi	th reference to	100.	The numbe	er of substrat	e level pl	nosphorylations in			
	-	gestive syste				one turn o	of citric acid	cycle is :				
				om duodenum		(1) Three	(2) Zero	(3) O	ne (4) Two			
			small intestine		Ans.	(3)						
	(3) Serosa canal	is the inner	most layer of	the alimentary	101.		protocol was	signed ir	n 1987 for control			
		s highly coi	led part			of :						
Ans.	(4)					(1) Disposal of e-wastes						
97.	Which of t	he following	g refer to cor	rect example(s)		· · · -		•	ied organisms from			
	of organisi	ms which ha	ave evolved du	ie to changes in			untry to ano		au hatan asa			
		ent brough	nt about by a	anthropogenic			n of ozone c					
	action?				(4) Release of Green House gases Ans. (3)							
	(a) Darwin	's Finches c	of Galapagos	islands.			following cor	herning	assential elements			
	(b) Herbici	ide resistan	t weeds.		102.	Match the following concerning essential elements and their functions in plants :						
	(c) Drug re	esistant euk	aryotes.					otolysis of water				
	(d) Man-cre	eated breeds	s of domestica	ted animals like		(b) Zinc			ollen germination			
	dogs.					(c) Boron		(iii) Required for				
	(1) Only (d)	(2) Only	(a)				chlor	ophyll biosynthesis			
	(3) (a) and	(c)	(4) (b), (d	c) and (d)	(d) Manganese			(iv) IA	A biosynthesis			
Ans.	(4)					Select the	correct opt	ion :				
98.	Match the	following co	olumns and se	lect the correct		(a)	(b)	(c)	(d)			
	option :					(1) (iv)	(i)	(ii)	(iii)			
	Colun	nn-I	Colum	r-II		(2) (ii)	(i)	(iv)	(iii)			
	(a) Pituitar	y gland	(i) Grave	's disease		(3) (iv)	(iii)	(ii)	(i)			
	(b) Thyroid	d gland	(ii) Diabe	etes mellitus		(4) (iii)	(iv)	(ii)	(i)			
	(c) Adrena	l gland	(iii) Diab	etes insipidus	Ans.							
	(d) Pancre	as	(iv) Addi	sion's disease	103.	option.		olumns and select the correct				
	(a)	(b)	(c)	(d)		Colum	nn-I		Column-II			
	(1) (ii)	(i)	(iv)	(iii)		(a) Gregari	ous, polypha	agous	(i) Asterias			
	(2) (iv)	(iii)	(i)	(ii)		pest						
	(3) (iii)	(ii)	(i)	(iv)		(b) Adult w	vith radial syn	mmetry	(ii) Scorpion			
	(4) (iii)	(i)	(iv)	(ii)		and la	rva with bila	teral				
Ans.	(4)					symme	etry					
99.	Select the	option inclu	uding all sexu	ally transmitted		(c) Book lu	ngs		(iii) <i>Ctenoplana</i>			
	diseases.					(d) Biolumi			(iv) <i>Locusta</i>			
	(1) Cance	er, AIDS, Sy	philis			(a)	(b)	(c)	(d)			
	(2) Gonom	rhoea, Sypł	nilis, Genital l	nerpes		(1) (ii)	(i)	(iii)	(iv)			
	(3) Gonor	rhoea, Mala	aria, Gential I	nerpes		(2) (i)	(iii) (i)	(ii)	(iv)			
	(4) AIDS,	Malaria, Fil	aria			(3) (iv)	(i)	(ii)	(iii)			
Ans.	(2)				A	(4) (iii)	(ii)	(i)	(iv)			
					Ans.	(3)						

path to success	CAREER KOTA (RAJASTHAN)											CODE - H3
104.		-	to Robe	ert May,	the g	lobal species diversity	108.			-			neir correct species
	is a	bout :							-	s in grass th tranhi		-	
	(1)	7 milli	on		(2)	1.5 million				th trophi and troph		(i) (ii)	Crow Vulture
	(3)	20 mill	lion		(4)	50 million		(0) (c)		trophic l		(iii)	Rabbit
Ans.	(1)							• •		d trophic		(iv)	Grass
		ı floret	s have					Sel	ect th	e corre o	c t optio	n:	
2001			nferior ((a)	(b)	(c)	(d)	
				Jvary				(1)	(i) (``)	(ii)	(iii) (;)	(iv)	
			r ovary					(2) (3)	(ii) (iii)	(iii) (ii)	(iv) (i)	(i) (iv)	
	(3)	Superi	or ovar	У				(3)	(iv)	(iii)	(i) (ii)	(iv) (i)	
	(4)	Hypog	ynous c	ovary			Ans.		()	(/	()	(-)	
Ans.	(2)						109.	Ma	tch th	ne follow	ing dise	eases	with the causative
106.	If th	ne dista	nce bet	ween tv	wo co	onsecutive base pairs		org			ect the		ect option.
	is ().34 nr	n and t	he tota	l num	ber of base pairs of				ımn - I			Column - II
						al mammalian cell is			Typh	ioia imonia		.,	Wuchereria Plasmodium
				hen th	e len	gth of the DNA is			Filari			• • •	Salmonella
	app	oroxim	ately :					• •	Mala			. ,	Haemophilus
	(1)	2.7 m	eters		(2)	2.0 meters			(a)	(b)	(c)	(d)	
	(3)	2.5 m	eters		(4)	2.2 meters		(1)		(i)	(ii)	(iii)	
Ans.	(4)							(2)	(i)	(iii)	(ii)	(iv)	
107.	Ma	tch the	followir	ng colur	nns ai	nd select the correct		(3) (4)	(iii) (ii)	(iv) (i)	(i) (iii)	(ii) (iv)	
		ion.		5			Ans.		(11)	(1)	(111)	(10)	
		Colur	nn - I			Column - II		• •	e root	s that ori	ginate f	rom	the base of the stem
	(a)	Bt cot	ton		(i)	Gene therapy		are	:		-		
	(b)	Adenc	osine		(ii)	Cellular defence		(1)	Later	ral roots		(2) I	Fibrous roots
	()	deami							Prima	ary roots		(4) l	Prop roots
		deficie					Ans.	• •	. ,.	1	(11		1
			incy		()		111.				of the	e sec	condary oocyte is
	(c)	RNAi			(111)	Detection of HIV			nplete At th		fusion	ofas	sperm with an ovum
						infection				to ovula		oruc	
	(d)	PCR			(iv)	Bacillus thuringiensis				ne time o		ation	
		(a)	(b)	(c)	(d)	1		(4)	After	zygote f	ormatic	n	
	(1)	(i)	(ii)	(iii)	(iv)		Ans.	• •					
	(2)	(iv)	(i)	(ii)	(iii)		112.					teme	ent with regard to
	(3)	(iii)	(ii)	(i)	(iv)					on Enzym		11	
	(4)	(ii)	(iii)	(iv)	(i)								y using DNA ligases. nctions by inspecting
Ans.		(/	()	()	(-)			(2)		ength of	-		
	(~)							(3)		-			at palindromic sites.
								(4)	-				engineering.
							Ans.	(1)					

CODE - H3

8

CODE - H3

- **113.** In relation to Gross primary productivity and Net primary productivity of an ecosystem, which one of the following statements is **correct** ?
 - (1) There is no relationship between Gross primary productivity and Net primary productivity.
 - (2) Gross primary productivity is always less than net primary productivity.
 - (3) Gross primary productivity is always more than net primary productivity.
 - (4) Gross primary productivity and Net primary productivity are one and same.

Ans. (3)

 $\label{eq:114.1} \textbf{114.} \ \textbf{The process of growth is maximum during}:$

(1) Dormancy (2) Log phase

(3) Lag phase (4) Senescence

Ans. (2)

- **115.** The sequence that controls the copy number of the linked DNA in the vector, is termed :
 - (1) Recognition site
 - (2) Selectable marker
 - (3) Ori site
 - (4) Palindromic sequence

Ans. (3)

- **116.** Name the enzyme that facilitates opening of DNA helix during transcription.
 - (1) RNA polymerase
 - (2) DNA ligase
 - (3) DNA helicase
 - (4) DNA polymerase

Ans. (1)

- 117. Snow-blindness in Antarctic region is due to :
 - (1) Damage to retina caused by infra-red rays
 - (2) Freezing of fluids in the eye by low temperature
 - (3) Inflammation of cornea due to high dose of UV-B radiation
 - (4) High reflection of light from snow

Ans. (3)

- $\label{eq:118.5} \textbf{118. Strobili or cones are found in :}$
 - (1) Equisetum
 - (2) Salvinia
 - (3) Pteris
 - (4) Marchantia

Ans. (1)

119. Match the following columns and select the **correct** option.

Column - I Column - II (a) Floating Ribs (i) Located between second and seventh ribs (ii) Head of the (b) Acromion Humerus (iii) Clavicle (c) Scapula (d) Glenoid cavity (iv) Do not connect with the sternum (a) **(b)** (c) (d) (1) (iv) (iii) (i) (ii) (iii) (2) (ii) (iv) (i) (3) (i) (iv) (iii) (ii)

Ans. (1)

(4) (iii)

120. Which of the following is put into Anaerobic sludge digester for further sewage treatment ?

(iv)

(i)

(1) Activated sludge

(ii)

- (2) Primary sludge
- (3) Floating debris
- (4) Effluents of primary treatment

Ans. (1)

- **121.** Identify the wrong statement with reference to the gene 'I' that controls ABO blood groups.
 - (1) Allele 'i' does not produce any sugar.
 - (2) The gene (I) has three alleles.
 - (3) A person will have only two of the three alleles.
 - (4) When I^A and I^B are present together, they express same type of sugar.

Ans. (4)

- **122.** The ovary is half inferior in :
 - (1) Plum (2) Brinjal
 - (3) Mustard (4) Sunflower

Ans. (1)

- **123.** The first phase of translation is :
 - (1) Recognition of an anti-codon
 - (2) Binding of mRNA to ribosome
 - (3) Recognition of DNA molecule
 - (4) Aminoacylation of tRNA

Ans. (4)

- **124.** In gel electrophoresis, separated DNA fragments can be visualized with the help of :
 - (1) Ethidium bromide in infrared radiation
 - (2) Acetocarmine in bright blue light
 - (3) Ethidium bromide in UV radiation
 - (4) Acetocarmine in UV radiation
- Ans. (3)

path to eneccess	CAREER INSTITUTE					CODE - H3
Ans. 126. Ans. 127. Ans. 128. Ans. 129.	during : (1) Leptotene (3) Zygotene (4) Identify the substances fr peptide bond, respective (1) Inulin, insulin (3) Glycerol, trypsin (1) Name the plant growth spraying on sugarcane of of stem, thus increasing the (1) Abscisic acid (3) Gibberellin (3) Which of the following se bodies is incorrect? (1) These represent rese (2) They are not bound (3) These are involved in (4) They lie free in the (3) Which of the following refines the (4) They lie free in the (3) Madagascar (4) Himalayas (1) How many true breeding Mendel select as pairs, with co (1) 8 (2) 4	 (2) Chitin, Cholesterol (4) Cellulose, lecithin th regulator which upon crop, increases the length he yield of sugarcane crop. (2) Cytokinin (4) Ethylene tatements about inclusion erve material in cytoplasm. by any membrane. ingestion of food particles. cytoplasm. egions of the globe exhibits ? ndia	Ans. 132. Ans. 133. Ans. 134.	 immunity. (1) Foetus receivents it is an example it is an example antibodies are called "Active antibodies are called "Active (2) When ready given, it is can example antibodies are called "Active (3) When ready given, it is can example and in early more (1) Species inter (2) Sex ratio (3) Natality (4) Mortality (1) Choose the correct (1) Exonucleases (2) Ligases (3) Polymerases (4) Nucleases (2) The process report in liquid form from and in early more (1) Plasmolysis (3) Root pressure (3) Which of the following seed of (1) Para-ascorbic (3) Abscisic acid 	ves some ple for p sed to a e produce e immun y-made a alled "Pa ity is quice alled "Pa ity	ement with reference to e antibodies from mother, passive immunity. antigen (living or dead) ted in the host's body. It is inty". antobodies are directly ssive immunity". ck and gives full response. is not an attribute of a is not an attribute of a c from the following : cuts at specific ons within DNA he two DNA molecules the DNA into fragments ate the two strands of DNA or facilitating loss of water o of grasss blades at night (2) Transpiration (4) Imbibition
128. Ans. 129. Ans. 130.	 (3) Which of the following solution is incorrect? (1) These represent reset (2) They are not bound (3) These are involved in (4) They lie free in the (3) Which of the following reprises the fol	erve material in cytoplasm. I by any membrane. ingestion of food particles. cytoplasm. egions of the globe exhibits ? adia	133. Ans. 134. Ans. 135.	 (3) Natality (4) Mortality (1) Choose the correction (1) Exonucleases (2) Ligases (3) Polymerases (4) Nucleases (2) (3) Polymerases reporting (1) Plasmolysis (3) Root pressure (3) Which of the following seed of (1) Para-ascorbice (3) Abscisic acid 	: Make positio : Join th : Break : Separa onsible fo m the tip ning is : e	cuts at specific ons within DNA ne two DNA molec the DNA into frag ate the two strands of or facilitating loss of o of grasss blades a (2) Transpiration (4) Imbibition not an inhibitory sub y? (2) Gibberellic ac

Class 12th Appeared/ Pass Students

Leader Batch

15th Sept.

Ex-ALLEN / 12th Pass in 2019 or before

Achiever Batch

 16th Sept.

Apply at www.allen.ac.in