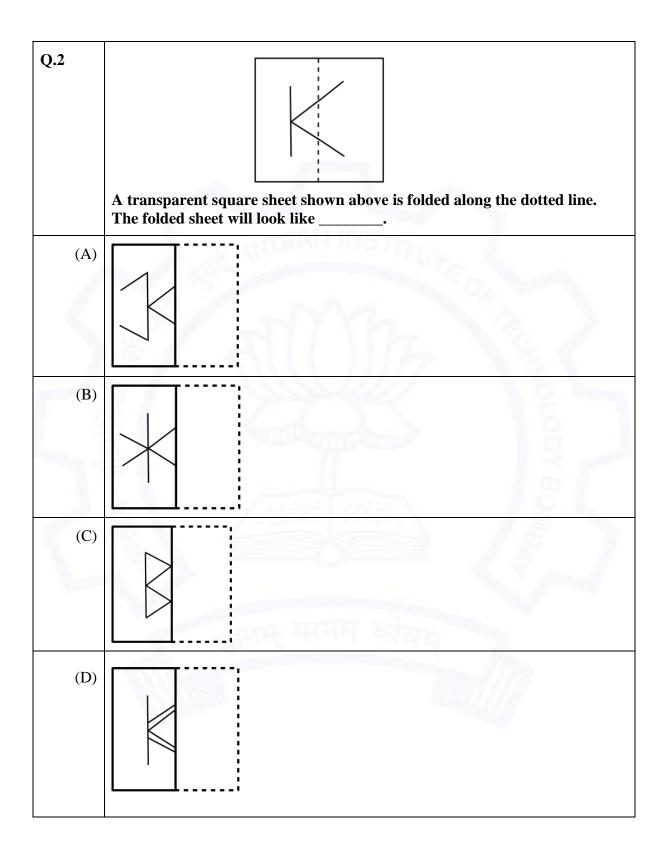


General Aptitude (GA)


Q.1 – Q.5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: -1/3).

Q.1	The people of society.	were at the demonstration were from all sections
(A)	whose	
(B)	which	STYLE VE
(C)	who	
(D)	whom	

Q.3	For a regular polygon having 10 sides, the interior angle between the sides of the polygon, in degrees, is:
(A)	396
(B)	324
(C)	216
(D)	144

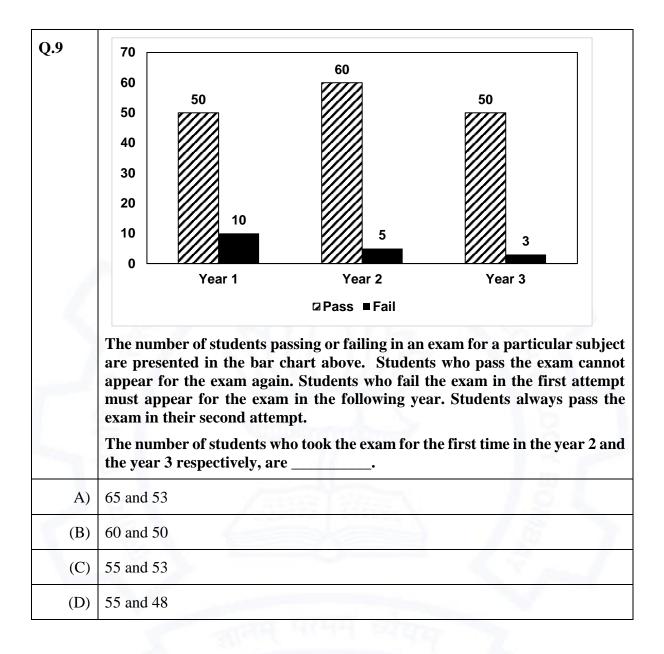
Q.4	ſ	Which one of the following numbers is exactly divisible by $(11^{13}+1)$?
	(A)	$11^{26} + 1$
	(B)	$11^{33} + 1$
	(C)	$11^{39} - 1$
	(D)	$11^{52} - 1$

Q.5	<i>Oasis</i> is to <i>sand</i> as <i>island</i> is to Which one of the following options maintains a similar logical relation in the above sentence?	
(A)	Stone	
(B)	Land	
(C)	Water	
(D)	Mountain	

Q. 6 – Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: -2/3).

Q.6	The importance of sleep is often overlooked by students when they are preparing for exams. Research has consistently shown that sleep deprivation greatly reduces the ability to recall the material learnt. Hence, cutting down on sleep to study longer hours can be counterproductive.
	Which one of the following statements is the CORRECT inference from the above passage?
(A)	Sleeping well alone is enough to prepare for an exam. Studying has lesser benefit.
(B)	Students are efficient and are not wrong in thinking that sleep is a waste of time.
(C)	If a student is extremely well prepared for an exam, he needs little or no sleep.
(D)	To do well in an exam, adequate sleep must be part of the preparation.

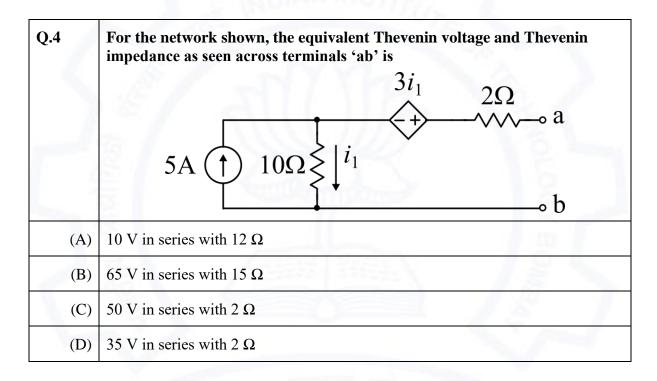
Q.7	$u_{0} u_{0} u_{0$
(A)	12.50
(B)	6.25
(C)	3.125
(D)	1.5625



Q.8	Let <i>X</i> be a continuous random variable denoting the temperature measured. The range of temperature is [0, 100] degree Celsius and let the probability density function of <i>X</i> be $f(x) = 0.01$ for $0 \le X \le 100$.
	The mean of <i>X</i> is
(A)	2.5
(B)	5.0
(C)	25.0
(D)	50.0

Q.10	Seven cars P, Q, R, S, T, U and V are parked in a row not necessarily in that order. The cars T and U should be parked next to each other. The cars S and V also should be parked next to each other, whereas P and Q cannot be parked next to each other. Q and S must be parked next to each other. R is parked to the immediate right of V. T is parked to the left of U. Based on the above statements, the only INCORRECT option given below is:
(A)	There are two cars parked in between Q and V.
(B)	Q and R are not parked together.
(C)	V is the only car parked in between S and R.
(D)	Car P is parked at the extreme end.

Electrical Engineering (EE)


Q.1 – Q.12 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: -1/3).

Q.1	Let p and q be real numbers such that $p^2 + q^2 = 1$. The eigenvalues of the matrix $\begin{bmatrix} p & q \\ q & -p \end{bmatrix}$ are
(A)	1 and 1
(B)	1 and -1
(C)	j and -j
(D)	pq and $-pq$

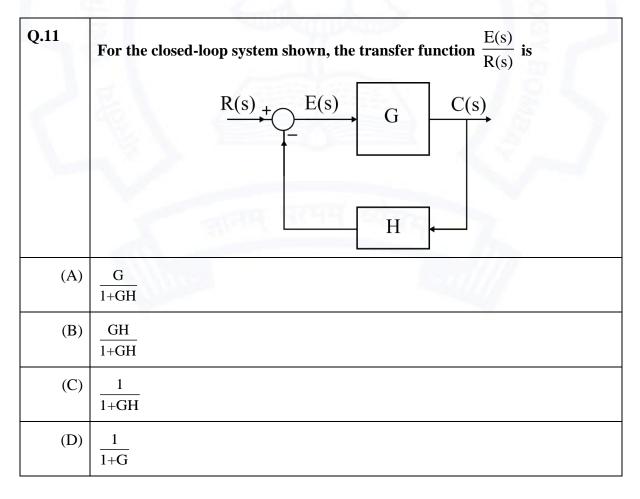
Q.2	Let $p(z) = z^3 + (1+j)z^2 + (2+j)z + 3$, where z is a complex number. Which one of the following is true?
(A)	conjugate $\{p(z)\} = p(\text{conjugate}\{z\})$ for all z
(B)	The sum of the roots of $p(z) = 0$ is a real number
(C)	The complex roots of the equation $p(z) = 0$ come in conjugate pairs
(D)	All the roots cannot be real

Q.3	Let $f(x)$ be a real-valued function such that $f'(x_0)=0$ for some $x_0 \in (0, 1)$, and $f''(x) > 0$ for all $x \in (0, 1)$. Then $f(x)$ has
(A)	no local minimum in (0, 1)
(B)	one local maximum in (0, 1)
(C)	exactly one local minimum in (0, 1)
(D)	two distinct local minima in (0, 1)

Q.5	Which one of the following vector functions represents a magnetic field \vec{B} ? (\hat{x} , \hat{y} , and \hat{z} are unit vectors along x-axis, y-axis, and z-axis, respectively)
(A)	$10x\hat{\mathbf{x}} + 20y\hat{\mathbf{y}} - 30z\hat{\mathbf{z}}$
(B)	$10y\hat{\mathbf{x}} + 20x\hat{\mathbf{y}} - 10z\hat{\mathbf{z}}$
(C)	$10z\hat{\mathbf{x}} + 20y\hat{\mathbf{y}} - 30x\hat{\mathbf{z}}$
(D)	$10x\hat{\mathbf{x}} - 30z\hat{\mathbf{y}} + 20y\hat{\mathbf{z}}$

Q.6	If the input $x(t)$ and output $y(t)$ of a system are related as $y(t) = \max(0, x(t))$, then the system is
(A)	linear and time-variant
(B)	linear and time-invariant
(C)	non-linear and time-variant
(D)	non-linear and time-invariant

Q.7	Two discrete-time linear time-invariant systems with impulse responses $h_1[n] = \delta[n-1] + \delta[n+1]$ and $h_2[n] = \delta[n] + \delta[n-1]$ are connected in cascade, where $\delta[n]$ is the Kronecker delta. The impulse response of the cascaded system is
(A)	$\delta[n-2]+\delta[n+1]$
(B)	$\delta[n-1]\delta[n] + \delta[n+1]\delta[n-1]$
(C)	$\delta[n-2] + \delta[n-1] + \delta[n] + \delta[n+1]$
(D)	$\delta[n]\delta[n-1] + \delta[n-2]\delta[n+1]$

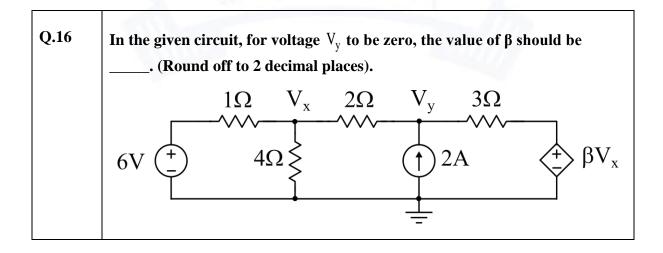

Q.8	Consider the table given:		
	Constructional feature	Machine type	Mitigation
	(P) Damper bars	(S) Induction motor	(X) Hunting
	(Q) Skewed rotor slots	(T) Transformer	(Y) Magnetic locking
	(R) Compensating winding	(U) Synchronous machine	(Z) Armature reaction
	CHALS .	(V) DC machine	1
1	The correct combination that relates the constructional feature, machine type and mitigation is		
(A)	P-V-X, Q-U-Z, R-T-Y	1 MB	181
(B)	P-U-X, Q-S-Y, R-V-Z		6
(C)	P-T-Y, Q-V-Z, R-S-X	and a	0

Q.9	Consider a power system consisting of <i>N</i> number of buses. Buses in this power system are categorized into slack bus, PV buses and PQ buses for load flow study. The number of PQ buses is <i>N_L</i> . The balanced Newton-Raphson method is used to carry out load flow study in polar form. <i>H</i> , <i>S</i> , <i>M</i> , and <i>R</i> are sub-matrices of the Jacobian matrix <i>J</i> as shown below: $\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = J \begin{bmatrix} \Delta \delta \\ \Delta V \end{bmatrix}, \text{ where } J = \begin{bmatrix} H & S \\ M & R \end{bmatrix}$ The dimension of the sub-matrix <i>M</i> is
(A)	$N_L \times (N-1)$
(B)	$(N-1)\times(N-1-N_L)$
(C)	$N_L \times (N - 1 + N_L)$
(D)	$(N-1) \times (N-1+N_L)$

Q.10	Two generators have cost functions F_1 and F_2 . Their incremental-cost characteristics are
	$\frac{dF_1}{dP_1} = 40 + 0.2P_1$
	$\frac{dF_2}{dP_2} = 32 + 0.4P_2$
	They need to deliver a combined load of 260 MW. Ignoring the network
	losses, for economic operation, the generations P_1 and P_2 (in MW) are
(A)	$P_1 = P_2 = 130$
(B)	$P_1 = 160, P_2 = 100$
(C)	$P_1 = 140, P_2 = 120$
(D)	$P_1 = 120, P_2 = 140$

Q.12	Inductance is measured by
(A)	Schering bridge
(B)	Maxwell bridge
(C)	Kelvin bridge
(D)	Wien bridge

Г

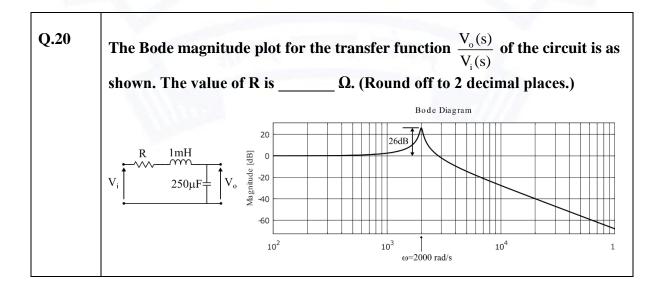


Q.13 – Q.25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).

Q.13	Suppose the circles $x^2 + y^2 = 1$ and $(x-1)^2 + (y-1)^2 = r^2$ intersect each other
	orthogonally at the point (u, v) . Then $u+v =$

μF.
$I 10\Omega j5\Omega j5\Omega$
$10 \text{ V}(\sim)\omega = 5 \text{ k rad/s}$ $3j5\Omega = \frac{1}{2}C$

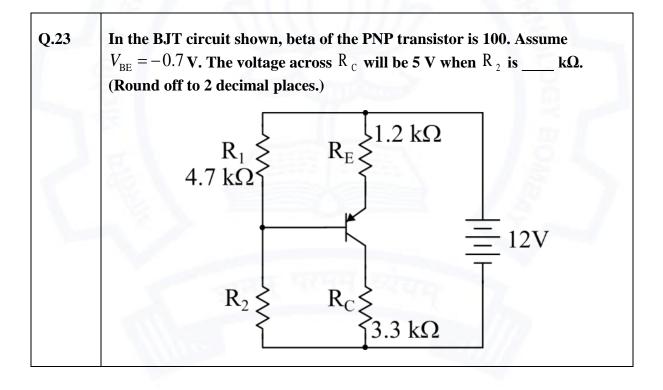
Q.15	Two single-core power cables have total conductor resistances of 0.7 Ω and
	0.5Ω , respectively, and their insulation resistances (between core and
	sheath) are 600 M Ω and 900 M Ω , respectively. When the two cables are
	joined in series, the ratio of insulation resistance to conductor resistance is $__\times 10^6$.

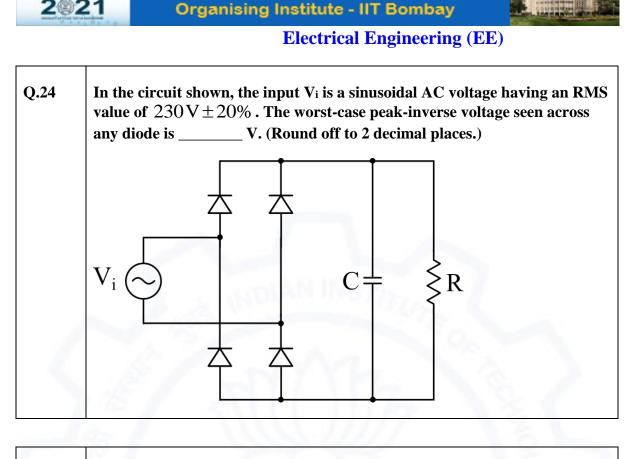


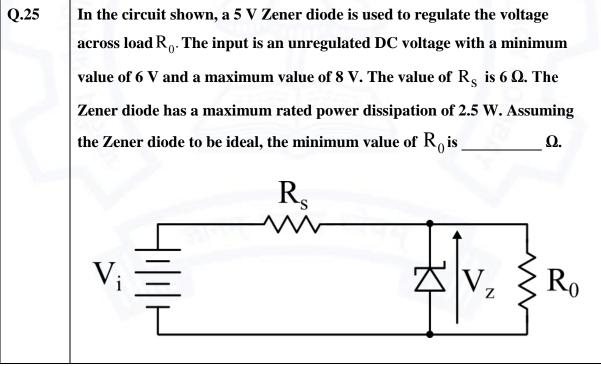
Q.17 A 1
$$\mu$$
C point charge is held at the origin of a cartesian coordinate system.
If a second point charge of 10 μ C is moved from (0, 10, 0) to (5, 5, 5) and
subsequently to (5, 0, 0), then the total work done is _____ mJ.
(Round off to 2 decimal places).
Take $\frac{1}{4\pi\varepsilon_o} = 9 \times 10^9$ in SI units. All coordinates are in meters.

Q.18	The power input to a 500 V, 50 Hz, 6-pole, 3-phase induction motor
	running at 975 RPM is 40 kW. The total stator losses are 1 kW. If the total
	friction and windage losses are 2.025 kW, then the efficiency is
	%.

Q.19	An alternator with internal voltage of $1 \angle \delta_1$ p.u and synchronous reactance
	of 0.4 p.u is connected by a transmission line of reactance 0.1 p.u to a synchronous motor having synchronous reactance 0.35 p.u and internal
	voltage of $0.85 \angle \delta_2$ p.u. If the real power supplied by the alternator is 0.866
	p.u, then $(\delta_1 - \delta_2)$ is degrees. (Round off to 2 decimal places.)
	(Machines are of non-salient type. Neglect resistances.)






k-to-peak.
voltage to 8 V
Round off to 2
1

Q.22	A 16-bit synchronous binary up-counte The two most significant bits are OR-ee Measurements show that Y is periodic, remains high in each period is	l together to form an output Y.
	24 ms. The clock frequency $f_{\rm CLK}$ is (Round off to 2 decimal places.)	MHz.

Graduate Aptitude Test in Engineering 2021

Q.26 - Q.37 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: -2/3).

Q.26	In the open interval (0, 1), the polynomial $p(x) = x^4 - 4x^3 + 2$ has
(A)	two real roots
(B)	one real root
(C)	three real roots
(D)	no real roots

Q.27	Suppose the probability that a coin toss shows "head" is p , where $0 . The coin is tossed repeatedly until the first "head" appears. The expected number of tosses required is$
(A)	p/(1-p)
(B)	(1-p)/p
(C)	1/ <i>p</i>
(D)	$1/p^2$

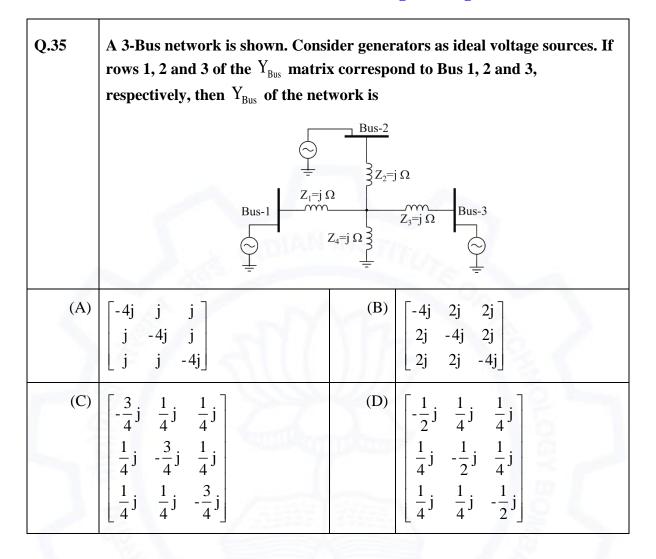
Q.28	Let $(-1-j)$, $(3-j)$, $(3+j)$ and $(-1+j)$ be the vertices of a rectangle C in the complex plane. Assuming that C is traversed in counter-clockwise direction, the value of the contour integral $\oint_C \frac{dz}{z^2(z-4)}$ is
(A)	$j\pi/2$
(B)	0
(C)	$-j\pi/8$
(D)	$j\pi/16$

Q.29	In the circuit, switch 'S' is in the closed position for a very long time. If the switch is opened at time $t = 0$, then $i_L(t)$ in amperes, for $t \ge 0$ is
	$10V \xrightarrow{S_{0}} 10V \xrightarrow{i_{L}} 30V \xrightarrow{i_{L}} 30V \xrightarrow{i_{L}} 30V$
(A)	$8 e^{-10t}$
(B)	10
(C)	$8+2e^{-10t}$
(D)	$10(1-e^{-2t})$

Q.30	The input impedance, $Z_{in}(s)$, for the network shown is $1H$ 4Ω 4Ω $C_{in}(s) \Rightarrow 6H$ $4H$ 5Ω
(A)	$\frac{23s^2 + 46s + 20}{4s + 5}$
(B)	6 <i>s</i> +4
(C)	7 <i>s</i> +4
(D)	$\frac{25s^2 + 46s + 20}{4s + 5}$

Q.31	The causal signal with z-transform $z^2(z-a)^{-2}$ is $(u[n]$ is the unit step signal)
(A)	$a^{2n}u[n]$
(B)	$(n+1)a^nu[n]$
(C)	$n^{-1}a^nu[n]$
(D)	$n^2 a^n u[n]$

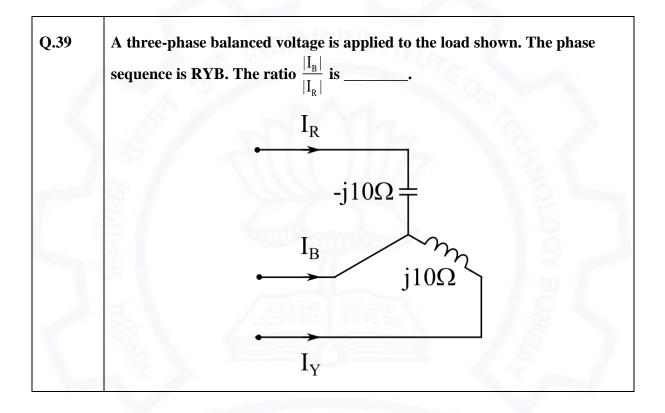
Q.32	Let $f(t)$ be an even function, i.e. $f(-t) = f(t)$ for all t . Let the Fourier transform of $f(t)$ be defined as $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$. Suppose $\frac{dF(\omega)}{d\omega} = -\omega F(\omega)$ for all ω , and $F(0) = 1$. Then
(A)	f(0) < 1
(B)	f(0) > 1
(C)	f(0) = 1
(D)	f(0) = 0

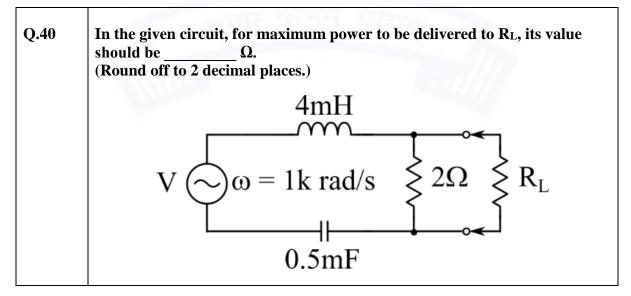

Q.33	In a single-phase transformer, the total iron loss is 2500 W at nominal voltage of 440 V and frequency 50 Hz. The total iron loss is 850 W at 220 V and 25 Hz. Then, at nominal voltage and frequency, the hysteresis loss and eddy current loss respectively are
(A)	1600 W and 900 W
(B)	900 W and 1600 W
(C)	250 W and 600 W
(D)	600 W and 250 W

Q.34	In the figure shown, self-impedances of the two transmission lines are 1.5j p.u each, and $Z_m = 0.5j$ p.u is the mutual impedance. Bus voltages shown in the figure are in p.u. Given that $\delta > 0$, the maximum steady-state real power that can be transferred in p.u from Bus-1 to Bus-2 is
	$\begin{array}{c} \text{Bus-1} \\ E \underline{/\delta^{\circ}} \end{array} \xrightarrow[\text{Transmission} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ $
(A)	E V
(B)	$\frac{ \mathbf{E} \mathbf{V} }{2}$
(C)	$2 \mathbf{E} \mathbf{V} $
(D)	$\frac{3 \mathbf{E} \mathbf{V} }{2}$

Q.36	Suppose I_A , I_B and I_C are a set of unbalanced current phasors in a three- phase system. The phase-B zero-sequence current $I_{B0} = 0.1 \angle 0^\circ$ p.u. If phase-A current $I_A = 1.1 \angle 0^\circ$ p.u and phase-C current $I_C = (1 \angle 120^\circ + 0.1)$ p.u, then I_B in p.u is
(A)	$1 \angle 240^{\circ} - 0.1 \angle 0^{\circ}$
(B)	$1.1\angle 240^{\circ} - 0.1\angle 0^{\circ}$
(C)	$1.1 \angle -120^{\circ} + 0.1 \angle 0^{\circ}$
(D)	$1 \angle -120^{\circ} + 0.1 \angle 0^{\circ}$

Γ




Q.37	A counter is constructed with three D flip-flops. The input-output pairs are named (D_0, Q_0) , (D_1, Q_1) , and (D_2, Q_2) , where the subscript 0 denotes the least significant bit. The output sequence is desired to be the Gray-code sequence 000, 001, 011, 010, 110, 111, 101, and 100, repeating periodically. Note that the bits are listed in the Q ₂ Q ₁ Q ₀ format. The combinational logic expression for D ₁ is
(A)	$Q_2 Q_1 Q_0$
(B)	$Q_2 Q_0 + Q_1 \overline{Q}_0$
(C)	$\overline{\mathbf{Q}}_{2}\mathbf{Q}_{0} + \mathbf{Q}_{1}\overline{\mathbf{Q}}_{0}$
(D)	$Q_2 Q_1 + \overline{Q}_2 \overline{Q}_1$

Q.38 – Q.55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).

Q.38	Let A be a 10×10 matrix such that A^5 is a null matrix, and let I be the
	10×10 identity matrix. The determinant of $\mathbf{A} + \mathbf{I}$ is

Q.41	One coulomb of point charge moving with a uniform velocity $10 \ \hat{x}$ m/s enters the region $x \ge 0$ having a magnetic flux density
	$\vec{B} = (10 y \hat{x} + 10 x \hat{y} + 10 \hat{z})$ T. The magnitude of force on the charge at
	$x = 0^+$ is N.
	$(\hat{x}, \hat{y}, \text{ and } \hat{z} \text{ are unit vectors along x-axis, y-axis, and z-axis, respectively.})$

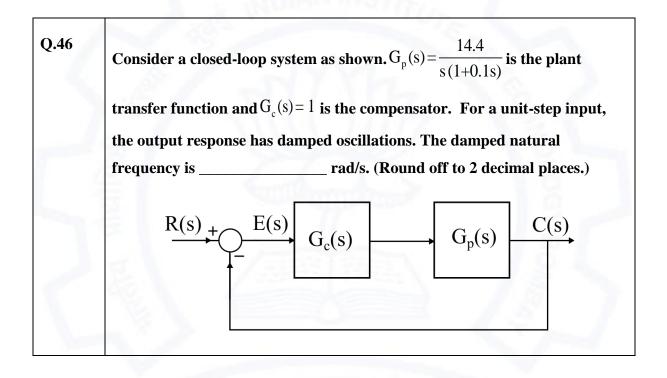
Q.42	Consider a large parallel plate capacitor. The gap d between the two plates is filled entirely with a dielectric slab of relative permittivity 5. The plates are initially charged to a potential difference of V volts and then disconnected from the source. If the dielectric slab is pulled out completely, then the ratio of the new electric field E_2 in the gap to the original electric
	field E_1 is

Q.43	Consider a continuous-time signal $x(t)$ defined by $x(t) = 0$ for $ t > 1$,
	and $x(t) = 1 - t $ for $ t \le 1$. Let the Fourier transform of $x(t)$ be defined
	as $X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$. The maximum magnitude of $X(\omega)$ is

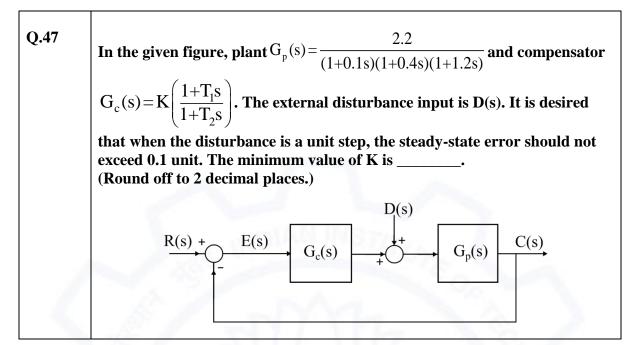
Q.44	A belt-driven DC shunt generator running at 300 RPM delivers 100 kW to a 200 V DC grid. It continues to run as a motor when the belt breaks, taking 10 kW from the DC grid. The armature resistance is 0.025Ω , field resistance is 50 Ω , and brush drop is 2 V. Ignoring armature reaction, the speed of the motor is RPM. (Round off to 2 decimal places.)
------	--

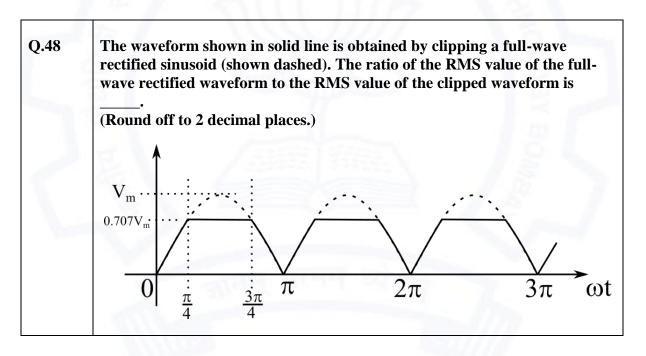
ATE

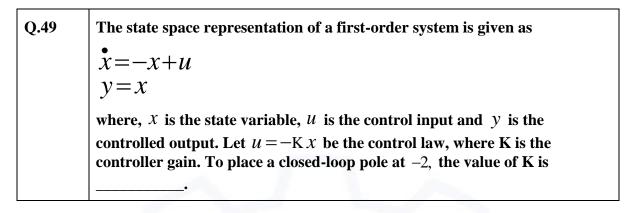
Γ

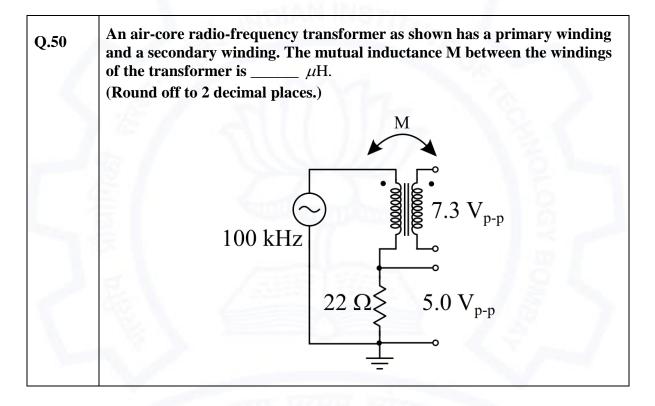

Γ

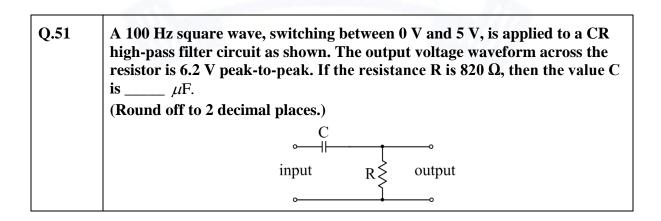
Г

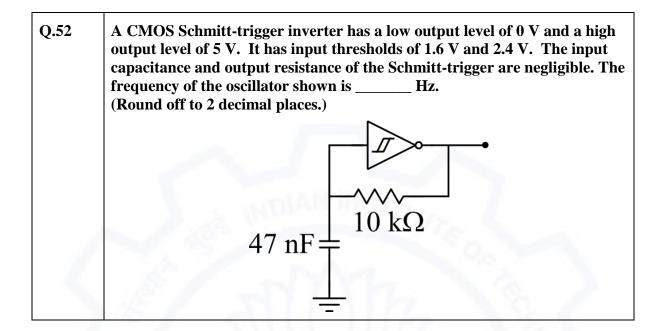


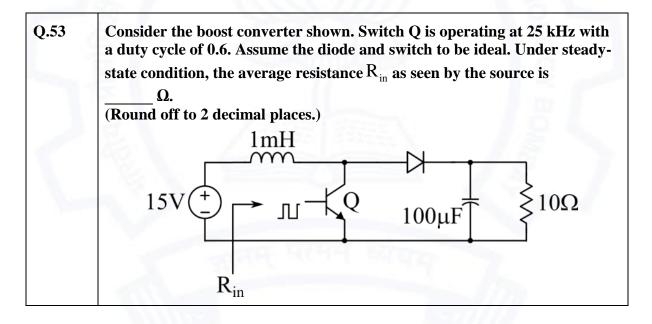

Q.45	An 8-pole, 50 Hz, three-phase, slip-ring induction motor has an effective rotor resistance of 0.08 Ω per phase. Its speed at maximum torque is 650 RPM. The additional resistance per phase that must be inserted in the	
	rotor to achieve maximum torque at start is decimal places.) Neglect magnetizing current and stator impedance. Consider equivalent circuit parameters refer	8

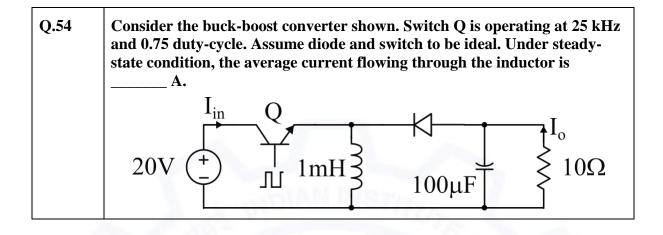


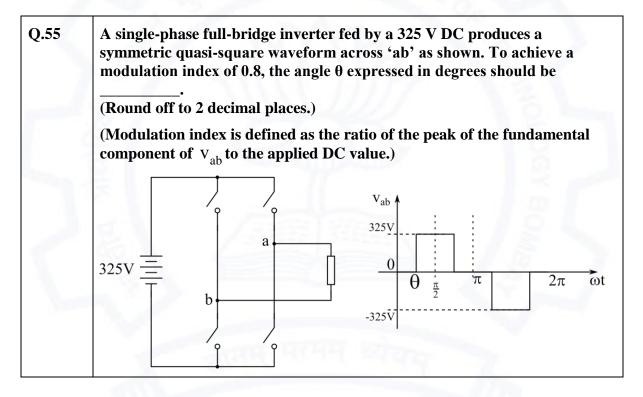












END OF THE QUESTION PAPER