Final JEE-Main Exam February, 2021/24-02-2021/Morning Session 3

FINAL JEE-MAIN EXAMINATION - FEBRUARY, 2021 (Held On Wednesday 24th February. 2021) **00 NOON**

(H	eld On Wednesday 24 th February, 2	TIME:9:00 AM to 12:00 N	
	PHYSICS		TEST PAPER WITH ANSWER
1.	SECTION-A n mole a perfect gas undergoes a cyclic proce	3.	In a Young's double slit experiment, the of the one of the slit is three times the other slit is three times the other slit is three times the slit is
	ABCA (see figure) consisting of the following processes.	ng	The amplitude of the light coming from is proportional to the slit-width. Find the of the maximum to the minimum inten
	$A \rightarrow B$: Isothermal expansion at temperatu T so that the volume is doubled fro V_1 to $V_2 = 2V_1$ and pressure change	m	the interference pattern. (1) $1:4$ (2) $3:1$ (3) $4:1$ (4) Official Ans. by NTA (3)
	from P_1 to P_2 . $B \rightarrow C$: Isobaric compression at pressure 1 to initial volume V_1 .	4. P ₂	Two stars of masses m and 2m at a dist rotate about their common centre of n free space. The period of revolution is
	$C \rightarrow A$: Isochoric change leading to change of pressure from P ₂ to P ₁ .	ge	(1) $\frac{1}{2\pi}\sqrt{\frac{d^3}{3Gm}}$ (2) $2\pi\sqrt{\frac{d^3}{3Gm}}$
	Total workdone in the complete cycle ABC is :	Α	(3) $\frac{1}{2\pi}\sqrt{\frac{3Gm}{d^3}}$ (4) $2\pi\sqrt{\frac{3Gm}{d^3}}$
	P▲		Official Ans. by NTA (2)
	P_1 P_2	5.	A current through a wire depends on t i = $\alpha_0 t$ + βt^2 where α_0 = 20 A/ β = 8 As ⁻² . Find the charge crossed thr section of the wire in 15 s. (1) 2250 C (2) 11250 C (3) 2100 C (4) 260 C Official Ans. by NTA (2)
	(1) 0 (2) $nRT\left(ln2+\frac{1}{2}\right)$	6.	Moment of inertia (M.I.) of four bodies, same mass and radius, are reported as $I_1 = M.I.$ of thin circular ring about its dia
	(3) nRTln2 (4) nRT $\left(\ln 2 - \frac{1}{2}\right)$		$I_2 = M.I.$ of circular disc about an perpendicular to the disc and going throu centre.

Official Ans. by NTA (4)

2. The focal length f is related to the radius of curvature r of the spherical convex mirror by:

(1)
$$f = +\frac{1}{2}r$$
 (2) $f = -r$
(3) $f = -\frac{1}{2}r$ (4) $f = r$

Official Ans. by NTA (1)

e width ther slit. m a slit the ratio ensity in

4) 2 : 1

stance d mass in is :

(1)
$$\frac{1}{2\pi}\sqrt{\frac{d^3}{3Gm}}$$
 (2) $2\pi\sqrt{\frac{d^3}{3Gm}}$
(3) $\frac{1}{2\pi}\sqrt{\frac{3Gm}{d^3}}$ (4) $2\pi\sqrt{\frac{3Gm}{d^3}}$

- time as /s and rough a
- , having s;

liameter. an axis ough the centre,

 $I_3 = M.I.$ of solid cylinder about its axis and $I_4 = M.I.$ of solid sphere about its diameter. Then :

(1)
$$I_1 + I_3 < I_2 + I_4$$

(2) $I_1 + I_2 = I_3 + \frac{5}{2}I_4$
(3) $I_1 = I_2 = I_3 > I_4$
(4) $I_1 = I_2 = I_3 < I_4$
Official Ans. by NTA (3)

1

Final JEE - Main Exam February, 2021/24-02-2021/Morning Session

7. Given below are two statements :

Statement-I: Two photons having equal linear momenta have equal wavelengths.

Statement-II : If the wavelength of photon is decreased, then the momentum and energy of a photon will also decrease.

In the light of the above statements, choose the correct answer from the options given below.

- (1) Both Statement I and Statement II are true
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are false
- (4) Statement I is true but Statement II is false

Official Ans. by NTA (4)

8. In the given figure, a mass M is attached to a horizontal spring which is fixed on one side to a rigid support. The spring constant of the spring is k. The mass oscillates on a frictionless surface with time period T and amplitude A. When the mass is in equilibrium position, as shown in the figure, another mass m is gently fixed upon it. The new amplitude of oscillation will be :

Official Ans. by NTA (2)

9. If Y, K and η are the values of Young's modulus, bulk modulus and modulus of rigidity of any material respectively. Choose the correct relation for these parameters.

(1)
$$Y = \frac{9K\eta}{3K - \eta} N / m^2$$

(2)
$$\eta = \frac{3YK}{9K+Y} N / m^2$$

(3)
$$Y = \frac{9K\eta}{2\eta + 3K} N / m^2$$

(4)
$$K = \frac{Y\eta}{9\eta - 3Y} N / m^2$$

Official Ans. by NTA (4)

10. In the given figure, the energy levels of hydrogen atom have been shown along with some transitions marked A, B, C, D and E. The transitions A, B and C respectively represent :

- (1) The ionization potential of hydrogen, second member of Balmer series and third member of Paschen series.
- (2) The first member of the Lyman series, third member of Balmer series and second member of Paschen series.
- (3) The series limit of Lyman series, third member of Balmer series and second member of Paschen series.
- (4) The series limit of Lyman series, second member of Balmer series and second member of Paschen series.

Official Ans. by NTA (3)

Session Final JEE - Main Exam February, 2021/24-02-2021/Morning Session

11. Four identical particles of equal masses 1kg made to move along the circumference of a circle of radius 1 m under the action of their own mutual gravitational attraction. The speed of each particle will be :

(1)
$$\sqrt{\frac{G}{2}(1+2\sqrt{2})}$$
 (2) $\sqrt{G(1+2\sqrt{2})}$
(3) $\sqrt{\frac{G}{2}(2\sqrt{2}-1)}$ (4) $\sqrt{\frac{(1+2\sqrt{2})G}{2}}$

Official Ans. by NTA (4)

12. If the velocity-time graph has the shape AMB, what would be the shape of the corresponding acceleration-time graph ?

13. Two equal capacitors are first connected in series and then in parallel. The ratio of the equivalent capacities in the two cases will be:

(1) 4 : 1	(2) 2 : 1
-----------	-----------

(3) 1 : 4 (4) 1 : 2

Official Ans. by NTA (3)

14. If an emitter current is changed by 4 mA, the collector current changes by 3.5 mA. The value of β will be :

(1) 7	(2) 0.5
(3) 0.875	(4) 3.5

Official Ans. by NTA (1)

15. Match List-I with List-II :

List-I	List-II		
(a) Isothermal	(i) Pressure constant		
(b) Isochoric	(ii) Temperature constant		
(c) Adiabatic	(iii) Volume constant		
(d) Isobaric	(iv) Heat content is constant		

Choose the correct answer from the options given below :

(1) (a) \rightarrow (i), (b) \rightarrow (iii), (c) \rightarrow (ii), (d) \rightarrow (iv) (2) (a) \rightarrow (ii), (b) \rightarrow (iii), (c) \rightarrow (iv), (d) \rightarrow (i) (3) (a) \rightarrow (ii), (b) \rightarrow (iv), (c) \rightarrow (iii), (d) \rightarrow (i) (4) (a) \rightarrow (iii), (b) \rightarrow (ii), (c) \rightarrow (i), (d) \rightarrow (iv) **Official Ans. by NTA (2)**

16. Each side of a box made of metal sheet in cubic shape is 'a' at room temperature 'T', the coefficient of linear expansion of the metal sheet is ' α '. The metal sheet is heated uniformly, by a small temperature ΔT , so that its new temperature is T + ΔT . Calculate the increase in the volume of the metal box.

(1)
$$3a^3\alpha\Delta T$$
 (2) $4a^3\alpha\Delta T$

(3) $4\pi a^3 \alpha \Delta T$ (4) $\frac{4}{3}\pi a^3 \alpha \Delta T$

Official Ans. by NTA (1)

17. A cell E₁ of emf 6V and internal resistance 2Ω is connected with another cell E₂ of emf 4V and internal resistance 8Ω (as shown in the figure). The potential difference across points X and Y is :

18. A cube of side 'a' has point charges +Q located at each of its vertices except at the origin where the charge is -Q. The electric field at the centre of cube is :

(1)
$$\frac{-Q}{3\sqrt{3}\pi\varepsilon_0 a^2} (\hat{x} + \hat{y} + \hat{z})$$

(2)
$$\frac{-2Q}{3\sqrt{3}\pi\epsilon_0 a^2}(\hat{x}+\hat{y}+\hat{z})$$

(3)
$$\frac{2Q}{3\sqrt{3}\pi\varepsilon_0 a^2} (\hat{x} + \hat{y} + \hat{z})$$

(4)
$$\frac{Q}{3\sqrt{3}\pi\varepsilon_0 a^2} (\hat{x} + \hat{y} + \hat{z})$$

Official Ans. by NTA (2)

19. Consider two satellites S₁ and S₂ with periods of revolution 1 hr. and 8hr. respectively revolving around a planet in circular orbits. The ratio of angular velocity of satellite S₁ to the angular velocity of satellites S₂ is :

(1) 8 : 1
(2) 1 : 4
(3) 2 : 1
(4) 1 : 8

Official Ans. by NTA (3)

Official Ans. by NTA (3) Official Ans. by ALLEN (1) **20.** The workdone by a gas molecule in an isolated

system is given by, $W = \alpha \beta^2 e^{-\frac{x^2}{\alpha kT}}$, where x is

the displacement, k is the Boltzmann constant and T is the temperature, α and β are constants. Then the dimension of β will be : (1) [M L² T⁻²] (2) [M L T⁻²] (3) [M² L T²] (4) [M⁰ L T⁰]

Official Ans. by NTA (2)

SECTION-B

The coefficient of static friction between a wooden block of mass 0.5 kg and a vertical rough wall is 0.2. The magnitude of horizontal force that should be applied on the block to keep it adhere to the wall will be _____N.
 [g = 10 ms⁻²]

Official Ans. by NTA (25)

2. A resonance circuit having inductance and resistance 2×10^{-4} H and 6.28 Ω respectively oscillates at 10 MHz frequency. The value of quality factor of this resonator is _____. $[\pi = 3.14]$

Official Ans. by NTA (200) Official Ans. by ALLEN (2000)

3. A hydraulic press can lift 100 kg when a mass 'm' is placed on the smaller piston. It can lift _____kg when the diameter of the larger piston is increased by 4 times and that of the smaller piston is decreased by 4 times keeping the same mass 'm' on the smaller piston.

Official Ans. by NTA (25600)

4.

An inclined plane is bent in such a way that the

vertical cross-section is given by
$$y = \frac{x^2}{4}$$
 where

y is in vertical and x in horizontal direction. If the upper surface of this curved plane is rough with coefficient of friction $\mu = 0.5$, the maximum height in cm at which a stationary block will not slip downward is _____ cm. **Official Ans. by NTA (25)**

4

Session Final JEE-Main Exam February, 2021/24-02-2021/Morning Session

5. An electromagnetic wave of frequency 5 GHz, is travelling in a medium whose relative electric permittivity and relative magnetic permeability both are 2. Its velocity in this medium is $____ \times 10^7$ m/s.

Official Ans. by NTA (15)

6. In connection with the circuit drawn below, the value of current flowing through 2 k Ω resistor is _____ × 10⁻⁴ A.

Official Ans. by NTA (25)

7. An audio signal $v_m = 20 \sin 2\pi$ (1500 t) amplitude modulates a carrier

 $v_{\rm C} = 80 \sin 2\pi \ (100,000 \ {\rm t}).$

The value of percent modulation is

Official Ans. by NTA (25)

8. A ball will a speed of 9 m/s collides with another identical ball at rest. After the collision, the direction of each ball makes an angle of 30° with the original direction. The ratio of velocities of the balls after collision is x : y, where x is _____.

Official Ans. by NTA (1)

9. A common transistor radio set requires 12V (D.C.) for its operation. The D.C. source is constructed by using a transformer and a rectifier circuit, which are operated at 220 V (A.C.) on standard domestic A.C. supply. The number of turns of secondary coil are 24, then the number of turns of primary are _____.

Official Ans. by NTA (440)

10. An unpolarized light beam is incident on the polarizer of a polarization experiment and the intensity of light beam emerging from the analyzer is measured as 100 Lumens. Now, if the analyzer is rotated around the horizontal axis (direction of light) by 30° in clockwise direction, the intensity of emerging light will be _____ Lumens.

Official Ans. by NTA (75)