JEE MAIN 2021

Rélíable
_ INSTITUTE
Unleashing Potential

PAPER-1 (B.E. / B.TECH)

QUESTIONS \& SOLUTIONS

Reproduced from Memory Retention
鹵 16 March, 2021
SHIFT-2
(1) $03: 00 \mathrm{pm}$ to $06: 00 \mathrm{pm}$

Duration : 3 Hours
Max. Marks : $\mathbf{3 0 0}$

SUBJECT - PHYSICS

JEE (MAIN) FEB 2021 RESULT

Legacy of producing Best Results Proved again

RESULT HIGHLIGHTS

A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India
Tel. : +91-744-2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

JEE-MAIN 2021 (16 MARCH ATTEMPT) SHIFT-2 PHYSICS

1. A bullet of mass 0.01 kg collides with a stick hanging with string and sticks to it as shown in figure. Stick rises to 9.8 cm . If gravitational acceleration is $9.8 \mathrm{~m} / \mathrm{s}^{2}$. Find initial velocity of bullet (in m / s).

(1) $490 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(2) $588 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(3) $294 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(4) $98 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Ans. (2)
Sol. $\mathrm{P}_{\mathrm{i}}=0.01 \times \mathrm{u}+0=\mathrm{P}_{\mathrm{f}}=6 \times \mathrm{v}$
$v=\frac{0.01 u}{6}$
using energy conservation

$$
\begin{aligned}
& \frac{1}{2} \times 6 \times\left(\frac{u}{600}\right)^{2}=6 \times 9.8 \times 9.8 \times 10^{-2} \\
& u=6 \times 98 \times \sqrt{2}=588 \sqrt{2} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. A particle of mass 2 kg is placed at rest at origin. A force $\vec{F}=2 \hat{i}+3 \hat{j}+5 \hat{k}$ is acting on particle. $A t t=4 \sec$ the position vector of particle is found to be $8 \hat{i}+b \hat{j}+20 \hat{k}$. Find b.
(1) 12
(2) -6
(3) 2
(4) 10

Ans. (1)
Sol. $\overrightarrow{\mathrm{a}}=\frac{\vec{F}}{\mathrm{~m}}=\frac{2 \hat{i}+3 \hat{j}+5 \hat{k}}{2}$
$\vec{r}_{\mathrm{f}}-\vec{r}_{\mathrm{i}}=\overrightarrow{\mathrm{u}} \mathrm{t}+\frac{1}{2} \overrightarrow{\mathrm{a}}^{2}$
$(x \hat{i}+y \hat{j}+2 \hat{k})-(0 \hat{i}+0 \hat{j}+0 \hat{k})=\frac{1}{2} \times\left(\frac{2 \hat{i}+3 \hat{j}+5 \hat{k}}{2}\right)(4)^{2}$
$x \hat{i}+y \hat{j}+z \hat{k}=8 \hat{i}+12 \hat{j}+20 \hat{k}$

Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA
oduced in a resistance if 1.5 A current is passed through it is 500 J in 20 sec . If the current is 3 A , the heat produced in the same resistor in the same duration will be :
(1) 500 J
(2) 1000 J
(3) 1500 J
(4) 2000 J

Ans. (4)
Sol. $\quad I^{2} R T=H$
$\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}=\left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right)^{2}$
$\Rightarrow \mathrm{H}_{2}=500 \times\left(\frac{3}{3 / 2}\right)^{2}=2000 \mathrm{~J}$
4. Half life for a radioactive sample is 20 min . Find the time interval in between decaying from 33% to 66 \% occurs:
(1) 40 min .
(2) 60 min
(3) 20 min
(4) 10 min

Ans. (3)
Sol. $\quad \mathrm{T}_{1 / 2}=20 \mathrm{~min} \quad \Rightarrow \frac{\ln 2}{\lambda}=20 \mathrm{~min}$

$$
\Rightarrow \lambda=\frac{\ln 2}{20(\mathrm{~min})}
$$

$\because \mathrm{N}_{\mathrm{t}}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
$\frac{\mathrm{N}_{\mathrm{t}}}{\mathrm{N}_{0}}=\mathrm{e}^{-\lambda_{1}} \quad \Rightarrow 0.67=\mathrm{e}^{-\lambda t_{1}}$
$\Rightarrow \ln (0.67)=-\lambda t_{1}$
$\Rightarrow \ln \left(\frac{100}{67}\right)=\lambda t_{1} \Rightarrow t_{1}=\frac{\ln \left(\frac{100}{67}\right) \times 20(\min)}{(\ln 2)}$

Similarly

$$
\mathrm{t}_{2}=\frac{\ln \left(\frac{100}{34}\right) \times 20(\min)}{\ln (2)}
$$

$\mathrm{t}_{2}-\mathrm{t}_{1}=19.57 \mathrm{~min} \approx 20 \mathrm{~min}$.
5. In the line of sight communication maximum separation between two antennas is 45 km . Find the height of each antenna assuming they are of same height and radius of earth is 6400 km .
(1) 20.65 m
(2) 39.55 m
(3) 18.45 m
(4) 64.39 m

Ans. (2)

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	3
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

-

Sol. $\mathrm{D}=2 \sqrt{2 \mathrm{Rh}}$

$$
\mathrm{H}=\frac{\mathrm{D}^{2}}{8 \mathrm{R}}=\frac{45^{2}}{8 \times 6400} \mathrm{~km}=39.55 \mathrm{~m}
$$

6. If the energy required to dissemble particles of earth upto infinite distance is $\frac{x G M_{e}{ }^{2}}{5 R_{e}}$

Where $\mathrm{M}_{\mathrm{e}}=$ Mass of earth
$\mathrm{R}_{\mathrm{e}}=$ Radius of earth
Evaluate x
Ans. 3
Sol. $\quad \mathrm{E}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}$
$\mathrm{E}=0-\left(\frac{3}{5} \frac{\mathrm{GM}_{\mathrm{e}}{ }^{2}}{\mathrm{R}_{\mathrm{e}}}\right)=\frac{3}{5} \frac{\mathrm{GM}_{\mathrm{e}}{ }^{2}}{\mathrm{R}_{\mathrm{e}}}$
So $\mathrm{x}=3$
7. If electron and proton are accelerated by same potential difference 100 V , then find the ratio of their de-Broglie wavelength
$\mathrm{M}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$
$\mathrm{M}_{\mathrm{p}}=1.6825 \times 10^{-27} \mathrm{~kg}$
(1) 43
(2) $\frac{1}{43}$
(3) $\frac{40}{1}$
(4) $\frac{1}{40}$

Ans. (1)
Sol. $\quad \lambda_{\mathrm{e}}=\frac{12.27}{\sqrt{V}} A^{\circ} \quad \frac{\lambda_{\mathrm{e}}}{\lambda_{\mathrm{p}}}=\frac{12.27}{0.286}=43$

$$
\lambda_{\mathrm{p}}=\frac{0.286}{\sqrt{V}} A^{\circ}
$$

8. Find the magnitude of torque produced by a force $\vec{F}=4 \hat{i}+3 \hat{j}+\hat{k}$ about point (2,3,5).

Ans. 22.44
Sol. $\quad|\vec{\tau}|=|\vec{r} \times \vec{F}|$
$|\vec{\tau}|=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ 4 & 3 & 1\end{array}\right|$
$|\vec{\tau}|=\hat{i}(3-15)-\hat{j}(2-20)+\hat{k}(6-12)$
$|\vec{\tau}|=-12 \hat{i}+18 \hat{j}-6 \hat{k}$

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	4
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

$$
\begin{aligned}
& |\vec{\tau}|=\sqrt{(-12)^{2}+(18)^{2}+(-6)^{2}}=\sqrt{504} \\
& =22.44
\end{aligned}
$$

9. A particle moves with a velocity depends on time as

$$
\vec{v}=0.5 t^{2} \cdot \hat{i}+3 \hat{\mathrm{t}}+9 \hat{\mathrm{k}}
$$

Find the position vector at $\mathrm{t}=2 \mathrm{sec}$.
(1) $\tan ^{-1}\left(\frac{2}{3}\right)$ with x-axis
(2) $\tan ^{-1}(3)$ with y-axis
(2) $\tan ^{-1}\left(\frac{1}{3}\right)$ with x-axis
(3) $\tan ^{-1}\left(\frac{3}{5}\right)$ with y-axis

Ans. (2)
Sol. $\frac{\mathrm{dx}}{\mathrm{dt}}=0.5 \mathrm{t}^{2} \hat{i}+3 \hat{\mathrm{j}}+9 \hat{\mathrm{k}}$
$x=\int_{0}^{2} 0.5 t^{2} \hat{i} d t+\int_{0}^{2} 3 t . \hat{j} d t+\int_{0}^{2} 9 \hat{k} d t$
$x=0.5 \times \frac{8}{3} \hat{i}+6 \hat{j}+18 \hat{k}$
Dot product of x with unit vector of y-direction gives angle $\tan ^{-1}(3)$ with y-axis
10. In carnot engine temperature of source is $127^{\circ} \mathrm{C}$ with efficiency 60%. Find out temperature of $\operatorname{sink}\left({ }^{\circ} \mathrm{C}\right)$.
(1) 143
(2) -105
(3) -113
(4) 113

Ans. (3)
Sol. $\quad \eta=\left(1-\frac{T_{2}}{T_{1}}\right)=0.6=1-\frac{T_{2}}{400}$
$\frac{\mathrm{T}_{2}}{400}=0.4$
$\mathrm{T}_{2}=160 \mathrm{k}$
$\mathrm{T}_{2}=160-273$
$\mathrm{T}_{2}=-113^{\circ} \mathrm{C}$
11. A disc having radius " a " is rising on an inclined plane as shown in figure. If the acceleration of disc is $\frac{2}{\mathrm{~b}} \cdot \mathrm{~g} \sin \theta$, then find the value of " b "?

Ans. 3

Sol.

$\mathrm{mg} \sin \theta-\mathrm{f}=\mathrm{na}_{\mathrm{cm}}$ \qquad (1)
$\mathrm{f} . \mathrm{a}=\frac{\mathrm{ma}}{2}{ }_{2}^{2} \cdot \alpha$ \qquad
$\mathrm{a}_{\mathrm{am}}=\alpha \mathrm{a}$ \qquad (4)
on solving
$\mathrm{a}_{\mathrm{cm}}=\frac{2}{3} \mathrm{~g} \sin \theta \quad \Rightarrow \mathrm{~b}=3$
12. In a transformer primary voltage is 220 V and secondary current is 0.11 A with output power 60 W .

(1) Transformer is step up.
(2) Transformer is step down
(3) Transformer is auxiliary
(4) None of these

Ans. (1)
Sol. $\quad P_{s}=V_{s} \times I_{s}$
$60=V_{\mathrm{s}} \times 0.11$
$\mathrm{V}_{\mathrm{s}}=\frac{60}{0.11}=\frac{6000}{11}, \mathrm{~V}_{\mathrm{p}}=220 \mathrm{volt}$
$\mathrm{V}_{\mathrm{s}}>\mathrm{V}_{\mathrm{p}} \quad$ so it is step up transformer

13. A conducting square loop of side length ' d ' with its edges parallel to x-axis and y-axis move with velocity $v_{0} \hat{i}$ in a region having magnetic field $\vec{B}=\frac{B_{0} x}{a} \hat{k}$. Find the induced emf.

(1) $\frac{\mathrm{Bd}^{2} v_{0}}{2 a}$
(2) $\frac{\mathrm{Bd}^{2} v_{0}}{a}$
(3) $\frac{\mathrm{Bd}^{2} v_{0}^{2}}{2 \mathrm{a}}$
(4) $\frac{\mathrm{Bd}^{2} v_{0}^{2}}{a}$

Ans. (2)
Sol.

$\varepsilon_{1}=\frac{\mathrm{B}_{0}(\mathrm{x}+\mathrm{d})}{\mathrm{a}} \mathrm{v}_{0} \mathrm{~d}$
$\varepsilon_{2}=\frac{B_{0} \mathrm{x}}{\mathrm{a}} \mathrm{v}_{0} \mathrm{~d}$
$\varepsilon_{\text {net }}=\varepsilon_{1}-\varepsilon_{2}=\frac{\mathrm{B}_{0} \mathrm{v}_{0} \mathrm{~d}^{2}}{\mathrm{a}}$
14. Statement-1 \rightarrow A cyclist can move on a horizontal road with speed $7 \mathrm{~km} / \mathrm{hr}$ in a circle of radius 2 m and coefficient of static friction is 0.2 .

Statement-2 \rightarrow maximum speed with which a cyclist can move in a circle on same banked road having inclination of 45° is $18.5 \mathrm{~km} / \mathrm{hr}$.
(1) Statement- 1 is true, statement 2 is false
(2) Statement- 1 is true, statement 2 is true
(3) Statement- 1 is false, statement 2 is true
(4) Statement- 1 is false, statement 2 is false

Ans. (2)

Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA

Sol. On a horizontal ground,
$\mathrm{v}_{\max }=\sqrt{\mu \mathrm{Rg}}=\sqrt{0.2 \times 2 \times 9.8}=1.97 \mathrm{~m} / \mathrm{s}$
$1.97 \times \frac{18}{5}$
$=7.12 \mathrm{~km} / \mathrm{hr}=7.2 \mathrm{~km} / \mathrm{hr}$
Statement-2

$$
\begin{aligned}
& v_{\max }=\sqrt{\operatorname{gr}\left(\frac{\tan \theta+\mu}{1-\mu \tan \theta}\right)}=\sqrt{2 \times 9.8 \times \frac{1.2}{0.8}}=19.5 \mathrm{~km} / \mathrm{hr} \\
& \mathrm{v}_{\min }=\sqrt{\mathrm{rg}\left(\frac{\tan \theta-\mu}{1+\mu \tan \theta}\right)}=\sqrt{2 \times 9.8 \times \frac{0.8}{1.2}}=13.01 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

15. A swimmer can swim with speed $12 \mathrm{~m} / \mathrm{s}$ in still water. Speed of river is $6 \mathrm{~m} / \mathrm{s}$. Find the angle at which he should swim with downstream so that he reaches directly opposite point on the other side
(1) 90°
(2) 150°
(3) 60°
(4) 120°

Ans. (4)
Sol. $\operatorname{Cos} \theta=\frac{6}{12}=\frac{1}{2}$
$\theta=60^{\circ}$
16. In a damped oscillation, damping constant is $20 \mathrm{gm} / \mathrm{sec}$ and mass of an object is 500 gm . Find out time when amplitude of oscillation becomes half.
(1) 34.6 sec .
(2) 44.6 sec .
(3) 65.1 sec .
(4) 55.6 sec .

Ans. (1)
Sol. $\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-\frac{b t}{2 \mathrm{~m}}}$
$\frac{\mathrm{bt}}{2 \mathrm{~m}}=\ln 2=0.693$
$t=\frac{2 \mathrm{~m}}{\mathrm{~b}} \times \mathbf{0 . 6 9 3}$
$\mathbf{t}=2 \times \frac{500}{20} \times 0.693$
$\mathrm{t}=50 \times 0.693=34.6 \mathrm{sec}$.

I

17. Radioactive substance A has half life 54 min and B has half life 18 min . Initially both have same number of nuclei. Find time (min) when A will become 16 times of B.

Ans. 108
Sol. $\mathrm{N}_{\mathrm{A}}=\mathrm{N}_{0}$ and $\mathrm{N}_{\mathrm{B}}=\mathrm{N}_{0}$ initially
$N_{B}=\frac{N_{A}}{16}$
$N_{0} e^{-\lambda_{2} t}=\frac{N_{0}}{16} e^{-\lambda_{1} t}$
$16=e^{-\lambda_{1}+\lambda_{2} t}$
$2^{4}=e^{\left(-\lambda_{1}+\lambda_{2}\right) t}$
$\left(\frac{\ell n 2}{18}-\frac{\ell n 2}{54}\right) \mathrm{t}=4 \ell \ln 2$
$\mathrm{T}=27 \times 4=108 \mathrm{~min}$
18. 1.5 miligram of gold (molar mass 198 gram $/ \mathrm{mole}$) is undergoing radioactive decay having half life of 2.7 days. Find initial activity of substance.
(1) 366 curie
(2) 466 curie
(3) 536 curie
(4) 636 curie

Ans. (1)
Sol. Initial activity $=\mathrm{A}_{0}=\lambda \mathrm{N}_{0}$.
$=\frac{\ln 2}{\mathrm{~T}_{1 / 2}} \times \frac{1.5 \times 10^{-3}}{198} \times 6.023 \times 10^{23}$
$=\frac{\ln 2}{2.7 \times 3600 \times 24} \times \frac{1.5 \times 10^{-3}}{198} \times \frac{6.023 \times 10^{23}}{3.7 \times 10^{10}} \mathrm{Ci}$
$=366 \mathrm{Ci}$
19. Heat produced per second is 10 mJ through a resistor if current 2 mA passes by it. Find its resistance.

Ans. 2500
Sol. $\mathrm{H}=\mathrm{i}^{2} \mathrm{Rt}$
$10 \times 10^{-3}=4 \times 10^{-6} \mathrm{R}$
$\therefore 10 \times \frac{10^{3}}{4}=R$
$\therefore \mathrm{R}=2500 \Omega$

\qquad
20. If converging lens is placed in the same medium, from which lens is made. If Radius of curvature is R_{1} and R_{2} then focal length of lens will be inside it.
(1) Infinite
(2) Zero
(3) 1
(4) $\frac{R_{1} R_{2}}{R_{1}-R_{2}}$

Ans. (1)
Sol. $\frac{1}{f}=\left[\frac{n_{2}}{n_{5}}-1\right]\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$
$\frac{1}{f}=0$
$\mathrm{f}=$ infinite.
21. A thin bimetallic strip is rigidly attached on its bottom surface as shown. Coefficient of linear expansion of strip A is more than strip B. If temperature of system is decreased, find correct option among the following.

(1) Bends towards left
(2) Bends towards right
(3) Neither bends nor shrinks
(4) Shrinks but does not bends

Ans. (1)
22. A charge q is moved in magnetic field by distance dl. Find the work done by magnetic field.
(1) zero
(2) infinity
(3) 1
(4) -1

Ans. (1)
Sol. $\quad \vec{F}=q \vec{V} \times \vec{B}$
$\mathrm{P}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{V}}=0 \quad \Rightarrow \mathrm{~W}=0$
23.

identifly the given logic gater
(1) NAND
(2) NOR
(3) OR
(4) AND

Ans. (2)
Sol. $Y=\overline{\overline{\bar{A}}} \overline{\bar{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$
So given logic gates circuit is a Nor gate
24. A parallel plate capacitor has area of plates $2 \mathrm{~m}^{2}$ and distance between plates 1 m . It is half filled with dielectric of dielectric constant $\mathrm{K}=3.2$ as shown in figure. Its capacitance is \qquad ε_{0}.

Ans. 3.04
Sol. $\quad \mathrm{C}_{1}=\frac{\mathrm{K} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d} / 2} ; \mathrm{C}_{2}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d} / 2}$
$\frac{1}{\mathrm{C}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}=\frac{\mathrm{d}}{2 \mathrm{~K} \varepsilon_{0} \mathrm{~A}}+\frac{\mathrm{d}}{2 \varepsilon_{0} \mathrm{~A}}$
$\frac{1}{\mathrm{C}}=\frac{\mathrm{d}}{2 \varepsilon_{0} \mathrm{~A}}\left(\frac{\mathrm{~K}+1}{\mathrm{~K}}\right)$
$\mathbf{C}=\frac{2 \varepsilon_{0} \mathrm{AK}}{\mathrm{d}(\mathrm{K}+1)}=\frac{2 \times 2 \times 3.2}{1 \times 4.2} \varepsilon_{0}=3.04 \varepsilon_{0}$
25. In a vessel containing an ideal gas the pressure is $1.1 \times 10^{5} \mathrm{pa}$, temperature is $27^{\circ} \mathrm{c} \&$ diameter of molecules is 0.8 nm . Find the mean free path of the molecules if Boltzman constant is 1.38×10^{-23}.
(1) 13.2 nm
(2) 132 nm
(3) 32 nm
(4) 1.32 nm

Ans. (1)
\qquad
Sol. $\lambda_{\text {mean }}=\frac{1}{\sqrt{2} \pi d^{2}\left(\frac{N}{V}\right)} \& P V=N K_{B} T$
$\therefore \lambda_{\text {mean }}=\frac{\mathrm{K}_{\mathrm{B}} \mathrm{T}}{\sqrt{2} \pi \mathrm{~d}^{2} \mathrm{p}}$
$=\frac{1.38 \times 10^{-23} \times 300}{\sqrt{2} \times 3.14 \times 0.64 \times 10^{-18} \times 1.1 \times 10^{5}}$
$=132 \times 10^{-10} \mathrm{~m}$
$=132 \mathrm{~A}^{0}$
13.2 nm
26. Coming Soon
27. Coming Soon
28. Coming Soon
29. Coming Soon
30. Coming Soon

