JEE MAIN 2021

Rélíáble
_ INSTITUTE
Unleashing Potential

PAPER-1 (B.E. / B.TECH)

QUESTIONS \& SOLUTIONS

Reproduced from Memory Retention
迴 17 March, 2021 SHIFT-2
(1) $03: 00 \mathrm{pm}$ to $06: 00 \mathrm{pm}$

Max. Marks : 300

SUBJECT - CHEMISTRY

JEE (MAIN) FEB 2021 RESULT

Legacy of producing Best Results Proved again

RESULT HIGHLIGHTS

A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India
Tel. : +91-744-2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

CHEMISTRY

1. Match the followings-
(A) Artificial sweetner
(i) Sodium benzoate
(B) Antiseptic
(ii) Bithional
(C) Preservative
(iii) Sodium stearate
(D) Glyceryl ester of stearic acid
(iv) Sucralose
(1) (A) \rightarrow (iv), (B) \rightarrow (ii), (C) \rightarrow (i), (D) \rightarrow (iii)
(2) (A) \rightarrow (iii), (B) \rightarrow (i), (C) \rightarrow (ii), (D) \rightarrow (iv)
(3) (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (i), (D) \rightarrow (iii)
(4) (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (iii), (D) \rightarrow (i)

Ans. (1)
2. Kjeldahl method is applicable for
(1) $\mathrm{PhN}_{2}^{\oplus}$
(2) $\mathrm{Ph}-\mathrm{NO}_{2}$
(3) $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(4)

Ans. (3)
3. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{?} \underset{\text { Glucose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}+\underset{\text { Fructose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \xrightarrow{?} 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
Which of the following enzymes are used in above reactions respectively?
(1) Amylase and Zymase
(2) Invertase and Zymase
(3) Zymase and Invertase
(4) Amylase and Invertase

Ans. (2)
4. Fructose is an example of
(1) Pyranose
(2) Aldohexose
(3) Ketohexose
(4) Pentose

Ans. (3)
-1 : 2-Methylbutane is oxidised by KMnO_{4} to give 2-Methyl butan-2-ol.
Statement-2 : An alkane is easily oxidised by KMnO_{4}.
(1) Both Statement-1 and Statement-2 are correct
(2) Both Statement-1 and Statement-2 are false
(3) Statement-1 is correct and Statement-2 is false
(4) Statement-1 is false and Statement-2 is correct

Ans. (3)
6. $\quad 1^{\circ}, 2^{\circ}$ and 3° amines can be distinguish by-
(1) Chloroform and KOH
(2) CS_{2} with HgCl_{2}
(3) Tosyl chloride
(4) $\mathrm{HCl}+\mathrm{ZnCl}_{2}$

Ans. (3)
7. How many carbon-carbon σ bonds are present in mesityl oxide?

Ans. (5)
Sol.

8.

Correct statement about A \& B is -
(1) A is more stable and formed with faster rate.
(2) B is more stable and formed with faster rate.
(3) A is less stable and formed with slow rate.
(4) B is less stable and formed with faster rate.

Ans. (1)
9. FeCl_{3} is reacted with oxalic acid in presence of KOH . Find secondary valency of iron in product

Ans. (6)
Sol. $\mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \xrightarrow{\mathrm{OH}^{-}}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}+\mathrm{H}_{2} \mathrm{O}$
Secondary valency $=6$
10. $[\mathrm{A}]+\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{ClO}+\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \longrightarrow$ Anisole $+\mathrm{B}+\mathrm{C}+\mathrm{N}_{2}$ Identify A, B and C
A
B
C
(1)
 $\mathrm{CH}_{3} \mathrm{CHO} \quad \mathrm{HCl}$
(2)
 $\mathrm{CH}_{3} \mathrm{CHO} \quad \mathrm{HCl}$
(3)

 HCl
(4)

-

$\rightarrow-$

HCl

Ans. (2)
11. 140.5 g Benzoylchloride is reacted with excess of diphenylamine to give 210 g of N, N-diphenyl benzamide. Calculate percentage yield of the product.

Ans. (77)

O
Sol.

Theoretical mass of product $=1 \times 273 \mathrm{~g}$
Observed mass of product $=210 \mathrm{~g}$
Percentage yield of product $=\frac{\mathrm{W}_{\text {experimental }}}{\mathrm{W}_{\text {theoretical }}} \times 100=\frac{210}{273} \times 100=76.9 \%$
Ans. 77
12. Element with atomic number 24 is expected to show following common oxidation states -
(1) +1 to +6
(2) $+1 \&+3$ to +6
(3) +3 to +6
(4) +2 to +6

Ans. (4)
13. Match the column-
(A) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{CuCl}_{4}\right]$
(P) Solvate isomerism
(B) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
(Q) Coordination isomerism
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
(R) Optical isomerism
(D) Cis- $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$
(S) Geometrical isomerism
(1) $A \rightarrow Q, B \rightarrow P, C \rightarrow S, D \rightarrow R$
(2) $\mathrm{A} \rightarrow \mathrm{P}, \mathrm{B} \rightarrow \mathrm{Q}, \mathrm{C} \rightarrow \mathrm{S}, \mathrm{D} \rightarrow \mathrm{R}$
(3) $\mathrm{A} \rightarrow \mathrm{P}, \mathrm{B} \rightarrow \mathrm{Q}, \mathrm{C} \rightarrow \mathrm{R}, \mathrm{D} \rightarrow \mathrm{S}$
(4) $\mathrm{A} \rightarrow \mathrm{S}, \mathrm{B} \rightarrow \mathrm{R}, \mathrm{C} \rightarrow \mathrm{P}, \mathrm{D} \rightarrow \mathrm{Q}$

Ans. (1)
14. Match the following ores with their chemical formula :
(A) Bauxite
(P) $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$
(B) Haematite
(Q) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(C) Magnetite
(R) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(D) Malachite
(S) $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
(1) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$
(2) $\mathrm{A} \rightarrow \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{P}$
(3) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{Q}$
(4) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$

Ans. (1)
15. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
$K_{P}=600.1 \mathrm{~atm} \& K_{C}=20.4 \mathrm{~mol} / \mathrm{L}$ at TK .
Determine T if $\mathrm{R}=0.083 \mathrm{~L} \mathrm{~atm} / \mathrm{K}-\mathrm{mol}$
Ans. (354)
Sol. $\quad K_{P}=K_{C}(R T)^{1}$
$600.1=20.4(0.083 \mathrm{~T})$
$\mathrm{T} \approx 354 \mathrm{~K}$
16. 1 molal aqueous $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ having $\alpha=0.4$ has same boiling point as 18.1% by weight solution of non electrolyte A. Find molar mass of A.
Ans. (85)
Sol. Since B.P. is same \Rightarrow elevation in B.P. is also same for both solution

$$
\begin{aligned}
& \left(\Delta \mathrm{T}_{\mathrm{B}}\right)_{\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]}=\left(\Delta \mathrm{T}_{\mathrm{B}}\right)_{\mathrm{A}} \\
& \Rightarrow\left(\mathrm{ik}_{\mathrm{b}} \mathrm{~m}\right)_{\mathrm{K}_{4}\left[\mathrm{Fe}\left((\mathrm{CN})_{6}\right]\right.}=\left(\mathrm{ik}_{\mathrm{b}} \mathrm{~m}\right)_{\mathrm{A}} \\
& =(1+4 \alpha) \times 1=1 \times \frac{(18.1) / \mathrm{M} \times 1000}{(100-18.1)} \\
& \Rightarrow 2.6=\frac{(18.1)}{\mathrm{M}} \times \frac{1000}{(81.9)} \Rightarrow \mathrm{M}=85
\end{aligned}
$$

17. Linear species is:
(1) N_{3}^{-}
(2) NO_{2}
(3) $\mathrm{Cl}_{2} \mathrm{O}$
(4) O_{3}

Ans. (1)
Sol. $\quad \overline{\mathrm{N}}=\stackrel{+}{\mathrm{Np}}=\overline{\mathrm{N}}$
(Linear)
18. In which of the following process entropy of system is decreasing?
(A) Freezing of water at $0^{\circ} \mathrm{C}$
(B) Freezing of water at $-10^{\circ} \mathrm{C}$
(C) Adsorption of H_{2} on Pb
(D) Dissolution of NaCl in $\mathrm{H}_{2} \mathrm{O}$
(E) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(1) A, B, C, E
(2) A, B, C, D
(3) A, B, C, D, E
(4) A, B

Ans. (1)
Sol. (D) $\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}$(aq) $\quad \Delta \mathrm{S}>0$
Remaining (A), (B), (C) and (E) have negative entropy

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	6
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

-

19. $2 \mathrm{~A}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}$ is an elementary reaction. If volume of container is reduced to $\frac{1}{3}$ rd. Determine ratio of rate final to initial.
Ans. (27)
Sol. For elementary reaction,
Rate of reaction $=\mathrm{K}[\mathrm{A}]^{2}\left[\mathrm{~B}_{2}\right]$
Initial rate $=K\left(\frac{n_{A}}{v_{0}}\right)^{2}\left(\frac{n_{B}}{v_{0}}\right)$
Final rate $=K\left(\frac{n_{A}}{\frac{v_{0}}{3}}\right)^{2}\left(\frac{n_{B}}{\frac{v_{0}}{3}}\right)=27 K\left(\frac{n_{A}}{v_{0}}\right)^{2}\left(\frac{n_{B}}{v_{0}}\right) \Rightarrow \frac{\text { Final Rate }}{\text { Initial Rate }}=\frac{27}{1}$
20. Spin only magnetic moment in ground state of iron is $\mathrm{x} \times 10^{-1}$.

$$
(\sqrt{2}=1.41, \sqrt{3}=1.73)
$$

Ans. (49)
Sol. $\quad \mathrm{Fe}-1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$
Number of unpaired electron $=4$

$$
\begin{aligned}
\mathrm{N}_{\text {spin }} & =\sqrt{\mathrm{n}(\mathrm{n}+2)} \\
= & \sqrt{4(4+2)} \\
= & \sqrt{24} \\
= & 4.9 \\
= & 49 \times 10^{-1}
\end{aligned}
$$

21. A conductivity cell when filled with NaCl solution is found to have conductivity $0.14 \Omega^{-1} \mathrm{~m}^{-1}$ and $\mathrm{R}=4.09 \Omega$. When HCl solution is filled in same conductivity cell, R is found to be 1.03Ω. If conductivity of HCl solution is $\mathrm{x} \times 10^{-2}\left(\right.$ in $\Omega^{-1} \mathrm{~m}^{-1}$). Determine ' x '.
Ans. (56)
Sol. for NaCl solution
$\mathrm{R}=\left(\frac{1}{\mathrm{~K}}\right)\left(\frac{\ell}{\mathrm{A}}\right) \Rightarrow \frac{\ell}{\mathrm{A}}=(\mathrm{R})(\mathrm{K})=(4.09)(0.14) \mathrm{m}^{-1}$
for HCl solution
$\mathrm{R}=\left(\frac{1}{\mathrm{~K}}\right)\left(\frac{\ell}{\mathrm{A}}\right) \Rightarrow \mathrm{K}=\frac{(\ell / \mathrm{A})}{\mathrm{R}}=\frac{(4.09)(0.14)}{1.03}=56 \times 10^{-2}$
$\mathrm{x}=56$

Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA
22. Number of atoms in 20 ml of Cl_{2} at STP are $\mathrm{x} \times 10^{21}$. Find x

$$
\mathrm{R}=0.083
$$

$$
\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}
$$

Ans. (1)
Sol. $\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}$
$=\frac{1 \times 20 \times 10^{-3}}{0.083 \times 273}$
Number of atoms $=\frac{1 \times 20 \times 10^{-3}}{0.083 \times 273} \times 2 \times 6.023 \times 10^{23}$
$=1.06 \times 10^{21}$
Ans. 1
23. If NaCl is doped with 10^{-3} mole percentage of SrCl_{2}, cationic vacancies per mole of NaCl . $\left(\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}\right)$ are $6.022 \times 10^{\mathrm{x}}$. Determine x .
Ans. (18)
Sol. 100 mole $\mathrm{NaCl} \longrightarrow 10^{-3}{\text { mole } \mathrm{SrCl}_{2} \longrightarrow 10^{-3} \mathrm{~N}_{\mathrm{A}} \text { Cationic vacancies }}^{\longrightarrow}$
$\therefore 1$ mole $\mathrm{NaCl} \longrightarrow 10^{-5} \mathrm{~N}_{\mathrm{A}}$ Cationic vacancies
$=10^{-5} \times 6.023 \times 10^{23}$
$=6.022 \times 10^{18}$ Cationic vacancies
24. During the recovery of NH_{3} in solvey process byproduct formed is:
(1) CaCl_{2}
(2) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(3) NaCl
(4) $\mathrm{Ca}(\mathrm{OH})_{2}$

Ans. (1)
25. Highest flocculating power for the coagulation of negatively charged sol is -
(1) Na^{+}
(2) Be^{2+}
(3) PO_{4}^{3-}
(4) SO_{4}^{2-}

Ans. (2)

