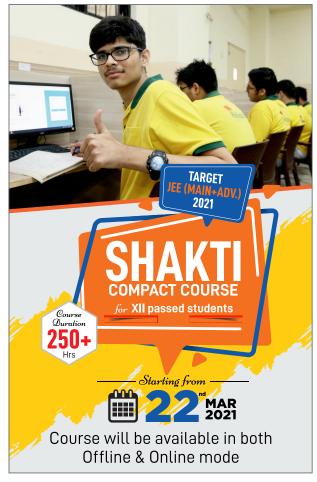
Reliable INSTITUTE Unleashing Potential

JEE MAIN 2021


PAPER-1 (B.E. / B.TECH)

Duration: 3 Hours Max. Marks: 300

SUBJECT - CHEMISTRY

A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India

Tel.: +91-744-2665544 | Website: www.reliablekota.com | E-mail: info@reliablekota.com

CHEMISTRY

- 1. Match the followings-
 - (A) Artificial sweetner

(i) Sodium benzoate

(B) Antiseptic

(ii) Bithional

(C) Preservative

- (iii) Sodium stearate
- (D) Glyceryl ester of stearic acid
- (iv) Sucralose
- (1) $(A) \rightarrow (iv)$, $(B) \rightarrow (ii)$, $(C) \rightarrow (i)$, $(D) \rightarrow (iii)$
- (2) $(A) \rightarrow (iii)$, $(B) \rightarrow (i)$, $(C) \rightarrow (ii)$, $(D) \rightarrow (iv)$
- (3) (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (i), (D) \rightarrow (iii)
- (4) $(A) \rightarrow (i)$, $(B) \rightarrow (iii)$, $(C) \rightarrow (iii)$, $(D) \rightarrow (i)$

Ans. **(1)**

- 2. Kjeldahl method is applicable for
 - (1) PhN_2^{\oplus}
- (2) Ph-NO₂
- (3) Ph–CH₂–NH₂

Ans. **(3)**

 $C_{12}H_{22}O_{11} + H_2O \xrightarrow{?} C_6H_{12}O_6 + C_6H_{12}O_6$ Fructose 3.

$$C_6H_{12}O_6 \xrightarrow{?} 2C_2H_5OH + 2CO_2$$

Which of the following enzymes are used in above reactions respectively?

(1) Amylase and Zymase

(2) Invertase and Zymase

(3) Zymase and Invertase

(4) Amylase and Invertase

Ans. **(2)**

- 4. Fructose is an example of
 - (1) Pyranose
- (2) Aldohexose
- (3) Ketohexose
- (4) Pentose

Ans. **(3)**

5. Statement-1: 2–Methylbutane is oxidised by KMnO₄ to give 2–Methyl butan–2–ol.

Statement-2: An alkane is easily oxidised by KMnO₄.

- (1) Both Statement-1 and Statement-2 are correct
- (2) Both Statement-1 and Statement-2 are false
- (3) Statement-1 is correct and Statement-2 is false
- (4) Statement-1 is false and Statement-2 is correct

Ans. (3)

- 6. 1°, 2° and 3° amines can be distinguish by-
 - (1) Chloroform and KOH

(2) CS₂ with HgCl₂

(3) Tosyl chloride

(4) HCl + ZnCl₂

Ans. (3)

7. How many carbon–carbon σ bonds are present in mesityl oxide?

Ans. (5)

Sol.
$$CH_3 - C^2 - CH^3 - C^4 - CH^3 - CH^3$$

8.
$$+ HBr \rightarrow A \rightarrow Br^{-} + A \rightarrow Br$$

Correct statement about A & B is -

- (1) A is more stable and formed with faster rate.
- (2) B is more stable and formed with faster rate.
- (3) A is less stable and formed with slow rate.
- (4) B is less stable and formed with faster rate.

Ans. (1)

9. FeCl₃ is reacted with oxalic acid in presence of KOH. Find secondary valency of iron in product

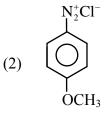
Ans. (6)

Sol. FeCl₃ + H₂C₂O₄
$$\xrightarrow{\text{OH}^-}$$
 [Fe(C₂O₄)₃]³⁻ + H₂O
Secondary valency = 6

10. [A] + $C_7H_7N_2CIO + CH_3$ - CH_2 - $OH \longrightarrow Anisole + B + C + N_2$

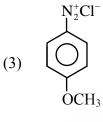
Identify A, B and C

Α

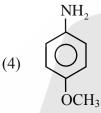

В

C

$$(1) \qquad \bigvee_{\text{Cl}}^{\text{N}_{2}^{+}\text{O}^{-}\text{CH}_{3}}$$


CH₃CHO

HC1


CH₃CHO

HC1

HC1

HCl

Ans. (2)

11. 140.5 g Benzoylchloride is reacted with excess of diphenylamine to give 210 g of N,N-diphenyl benzamide. Calculate percentage yield of the product.

$$\begin{array}{c|c}
O & O \\
C-Cl & C-N \\
\hline
C-N & Ph \\
\hline
Excess & O \\
Ph
\end{array}$$

Ans. (77)

Sol. Moles of Ph
$$-C - Cl = \frac{140.5}{140.5} = 1 \text{ mol.}$$

O

Moles of $Ph - C - N(Ph)_2$ that should be obtained by mol-mol analysis = 1 mol

Theoretical mass of product = $1 \times 273g$

Observed mass of product = 210 g

Percentage yield of product =
$$\frac{W_{\text{experimental}}}{W_{\text{theoretical}}} \times 100 = \frac{210}{273} \times 100 = 76.9\%$$

Ans. 77

12. Element with atomic number 24 is expected to show following common oxidation states -

$$(1) + 1$$
 to $+6$

$$(2) +1 & +3 to +6$$

$$(3) + 3 \text{ to } + 6$$

$$(4) + 2 \text{ to } + 6$$

Ans. (4)

13. Match the column-

- (A) $[Cu(NH_3)_4][CuCl_4]$
- (P) Solvate isomerism
- (B) $[Co(H_2O)_6]Cl_3$
- (Q) Coordination isomerism
- (C) $[Co(NH_3)_3Cl_3]$
- (R) Optical isomerism
- (D) $Cis-[Co(en)_2Cl_2]^+$
- (S) Geometrical isomerism

(1)
$$A \rightarrow Q, B \rightarrow P, C \rightarrow S, D \rightarrow R$$

(2)
$$A \rightarrow P, B \rightarrow Q, C \rightarrow S, D \rightarrow R$$

(3)
$$A \rightarrow P, B \rightarrow Q, C \rightarrow R, D \rightarrow S$$

(4)
$$A \rightarrow S, B \rightarrow R, C \rightarrow P, D \rightarrow Q$$

Ans. (1)

14. Match the following ores with their chemical formula:

- (A) Bauxite
- (P) Al₂O₃.xH₂O
- (B) Haematite
- (Q) Fe₂O₃
- (C) Magnetite
- (R) Fe₃O₄
- (D) Malachite
- (S) CuCO₃.Cu(OH)₂
- $(1) A \rightarrow P; B \rightarrow Q; C \rightarrow R; D \rightarrow S$
- (2) A \rightarrow S; B \rightarrow R; C \rightarrow Q; D \rightarrow P
- (3) $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow Q$
- (4) $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow S$; $D \rightarrow R$

Ans. (1)

15. For the reaction $N_2O_4(g) \Longrightarrow 2NO_2(g)$

 $K_P = 600.1$ atm & $K_C = 20.4$ mol/L at TK.

Determine T if R = 0.083 L atm/K-mol

Ans. (354)

Sol.
$$K_P = K_C (RT)^1$$

 $600.1 = 20.4 (0.083T)$

$$T \approx 354 \text{ K}$$

1 molal aqueous $K_4[Fe(CN)_6]$ having $\alpha = 0.4$ has same boiling point as 18.1% by weight solution of non electrolyte A. Find molar mass of A.

Ans. (85)

Sol. Since B.P. is same \Rightarrow elevation in B.P. is also same for both solution

$$(\Delta T_B)_{K_4[Fe(CN)_6]} = (\Delta T_B)_A$$

$$\Rightarrow (ik_b m)_{K_a[Fe(CN)_6]} = (ik_b m)_A$$

=
$$(1 + 4\alpha) \times 1 = 1 \times \frac{(18.1) / M \times 1000}{(100 - 18.1)}$$

$$\Rightarrow$$
 2.6 = $\frac{(18.1)}{M} \times \frac{1000}{(81.9)} \Rightarrow M = 85$

17. Linear species is:

(1)
$$N_3^-$$

$$(4) O_3$$

Ans. (1)

Sol.
$$\stackrel{-}{N} = \stackrel{+}{N} = \stackrel{-}{N}$$
sp
(Linear)

18. In which of the following process entropy of system is decreasing?

(A) Freezing of water at 0°C

(B) Freezing of water at −10°C

(C) Adsorption of H₂ on Pb

(D) Dissolution of NaCl in H₂O

(E) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

(1) A, B, C, E

(2) A, B, C, D

(3) A, B, C, D, E

(4) A, B

Ans. (1)

Sol. (D) NaCl (s) \rightarrow Na⁺ (aq) + Cl⁻ (aq) Δ S > 0

Remaining (A), (B), (C) and (E) have negative entropy

19. $2A + B_2 \rightarrow 2AB$ is an elementary reaction. If volume of container is reduced to $\frac{1}{3}$ rd. Determine ratio of rate final to initial.

Ans. (27)

Sol. For elementary reaction,

Rate of reaction = $K [A]^2 [B_2]$

Initial rate =
$$K \left(\frac{n_A}{v_0}\right)^2 \left(\frac{n_B}{v_0}\right)$$

Final rate =
$$K \left(\frac{n_A}{\frac{v_0}{3}} \right)^2 \left(\frac{n_B}{\frac{v_0}{3}} \right) = 27 K \left(\frac{n_A}{v_0} \right)^2 \left(\frac{n_B}{v_0} \right) \implies \frac{\text{Final Rate}}{\text{Initial Rate}} = \frac{27}{1}$$

20. Spin only magnetic moment in ground state of iron is $x \times 10^{-1}$.

$$(\sqrt{2} = 1.41, \sqrt{3} = 1.73)$$

Ans. (49)

Sol. Fe $-1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$

Number of unpaired electron = 4

$$N_{spin} = \sqrt{n(n+2)}$$

$$= \sqrt{4(4+2)}$$

$$= \sqrt{24}$$

$$= 4.9$$

$$= 49 \times 10^{-1}$$

21. A conductivity cell when filled with NaCl solution is found to have conductivity 0.14 Ω^{-1} m⁻¹ and R = 4.09 Ω . When HCl solution is filled in same conductivity cell, R is found to be 1.03 Ω . If conductivity of HCl solution is $x \times 10^{-2}$ (in Ω^{-1} m⁻¹). Determine 'x'.

Ans. (56)

Sol. for NaCl solution

$$R = \left(\frac{1}{K}\right) \left(\frac{\ell}{A}\right) \Rightarrow \frac{\ell}{A} = (R)(K) = (4.09)(0.14) \text{ m}^{-1}$$

for HCl solution

$$R = \left(\frac{1}{K}\right) \left(\frac{\ell}{A}\right) \Rightarrow K = \frac{\binom{\ell/A}{A}}{R} = \frac{(4.09)(0.14)}{1.03} = 56 \times 10^{-2}$$

$$x = 56$$

22. Number of atoms in 20 ml of Cl_2 at STP are $x \times 10^{21}$. Find x

$$R = 0.083$$

$$N_A = 6.023 \times 10^{23}$$

Ans. (1)

Sol.
$$n = \frac{PV}{RT}$$

$$= \frac{1 \times 20 \times 10^{-3}}{0.083 \times 273}$$

Number of atoms =
$$\frac{1 \times 20 \times 10^{-3}}{0.083 \times 273} \times 2 \times 6.023 \times 10^{23}$$

$$= 1.06 \times 10^{21}$$

Ans.1

23. If NaCl is doped with 10^{-3} mole percentage of SrCl₂, cationic vacancies per mole of NaCl. (N_A = 6.023×10^{23}) are 6.022×10^{x} . Determine x.

Ans. (18)

Sol. 100 mole NaCl \longrightarrow 10⁻³ mole SrCl₂ \longrightarrow 10⁻³ N_A Cationic vacancies

∴ 1 mole NaCl \longrightarrow 10⁻⁵ N_A Cationic vacancies

$$= 10^{-5} \times 6.023 \times 10^{23}$$

 $= 6.022 \times 10^{18}$ Cationic vacancies

24. During the recovery of NH₃ in solvey process byproduct formed is :

- (1) CaCl₂
- (2) Na₂CO₃
- (3) NaCl
- (4) Ca(OH)₂

Ans. (1)

25. Highest flocculating power for the coagulation of negatively charged sol is –

- (1) Na⁺
- (2) Be^{2+}
- (3) PO_4^{3-}
- (4) SO_4^{2-}

Ans. (2)