An oil drop of radius 2mm with density 3g cm^{-3} is held stationary under a constant $E = 3.55 \times 10^5 \text{V m}^{-1}$ in the milikan’s drop experiment. What is the number of excess e^- that oil drop will possess ($g = 9.81$)

Ans. $(N = 61.60 \times 10^{14})$

An AC voltage rating 240V, 50Hz. Find the time to change current from max. value to rms value

A. 2.5S

B. 2.5 ms

C. 0.25 ms

D. 25 ms

Ans. B
A bullet of mass 0.1kg moves with velocity 10 m/s. It strikes a block and comes to rest after travelling 0.5m inside block. Find retardation of bullet.

Ans. \(a = -100 \text{ m/s}^2 \)

Radius of orbit of a satellite is R and \(T \) is time period. Find \(T^1 \), when orbit radius increase to 9R.

Ans. \(T^1 = 27T \)
A swimmer swims with a speed of 10 m/s at angle of 120° from direction of river flow. Find velocity of river flow such that swimmer reach exactly opposite point of bank.

\[x \text{ m/s} \]

\[10 \text{ m/s} \]

\[120° \]

Ans. 5 m/s

Find voltage across 10Ω

\[\text{Ans. } 28.8 \text{V} \]
Angular velocity of a ring is ω. If we put two masses each of mass m at the diametrically opposite points then the resultant angular velocity. (Mass of rings is m).

Ans. $\left(\omega' = \frac{\omega}{3}\right)$

An AC voltage rating 240V, 50Hz. Find the time to change current from max. value to rms value

A. 2.5S
B. 2.5 ms
C. 0.25 ms
D. 25 ms

Ans. B
Find voltage across 10Ω

Ans. 28.8V