JEE MAIN 2021

Rélíable
_ INSTITUTE
Unleashing Potential

PAPER-1 (B.E. / B.TECH)

QUESTIONS \& SOLUTIONS

Reproduced from Memory Retention
鹵 18 March, 2021 SHIFT-1
(1) 09:00 am to 12 Noon

Duration : 3 Hours
Max. Marks : 300

SUBJECT - PHYSICS

JEE (MAIN) FEB 2021 RESULT

Legacy of producing Best Results Proved again

RESULT HIGHLIGHTS

A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India
Tel. : +91-744-2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

JEE(MAIN) 2021 (18 MARCH ATTEMPT) SHIFT-1 PHYSICS

1. If a simple pendulum completes 200 oscillation in 100 sec . Least count of watch is 1 sec., length of simple pendulum is 100 cm and it's least count is 1 mm then find max. possible percentage error in measuring acceleration due to gravity.
(1) 3.2
(2) 5.2
(3) 2.1
(4) 4.1

Ans. (3)
Sol. $\quad T=2 \pi \sqrt{\frac{\ell}{g}}$
$\mathrm{T}^{2}=4 \pi^{2}\left(\frac{\ell}{\mathrm{~g}}\right)$
$\mathrm{g}=4 \pi^{2}\left(\frac{\ell}{\mathrm{~T}^{2}}\right)$
$\frac{\Delta \mathrm{g}}{\mathrm{g}}=\frac{\Delta \ell}{\ell}+2 \frac{\Delta \mathrm{~T}}{\mathrm{~T}}$
$\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100=\frac{0.1 \mathrm{~cm}}{100 \mathrm{~cm}} \times 100 \%+2\left(\frac{1 \mathrm{sec}}{100 \mathrm{sec}}\right) \times 100 \%$
$\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100=2.1 \%$
2. A girl is looking at the distant rectangular window, she finds window to be blurred \& nonuniformly curved. What eye defect she may have?
(1) Myopia \& Astigmatism
(2) Myopia \& Hypermetropia
(3) Astigmatism
(4) Hypermetropia \& Astigmatism

Ans. (1)
3. In the circuit shown evaluate potential difference across 10Ω in volts?

Ans. 70.00

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	2
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

l
Sol. $\mathrm{R}_{\mathrm{eq}}=10+\frac{10 \times 20}{50 \times 20}$

$$
\begin{aligned}
& =\frac{170}{7} \Omega \\
& I=\frac{v}{R_{e q}}=\frac{170}{170} \times 7=7 \mathrm{amp} \\
& \mathrm{~V}_{10 \Omega}= \\
& =I R \\
& \quad=7 \times 10=70 \mathrm{v}
\end{aligned}
$$

4. A satellite revolves in a circular orbit of radius R around earth with time period T . Find its time period if it starts revolving in radius 9R?
(1) 3 T
(2) 6 T
(3) 9 T
(4) 27 T

Ans. (4)
Sol. $\quad \mathrm{T}^{2} \propto \mathrm{R}^{3}$

$$
\begin{aligned}
& \therefore\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{2}=\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)^{3} \\
& \therefore\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)^{2}=9^{3}
\end{aligned}
$$

$$
\therefore \quad \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=27
$$

5. AC circuit diagram is shown. Find time taken to reach it's current from $i_{r m s}$ to $i_{\text {max }}$.

(1) 10 milli sec.
(2) 1 milli sec.
(3) 2.5 milli sec.
(4) 5 milli sec.

Ans. (3)
Sol. $i=i_{\text {max }} \sin (\omega t+\theta)$
at $\mathrm{t}=0,1=\mathrm{i}_{\mathrm{rms}}$
$\mathrm{i}_{\mathrm{rms}}=\sqrt{2}\left(\mathrm{i}_{\text {rms }}\right) \sin \theta$
$\theta=\frac{\pi}{4}$
$i=i_{\max } \sin \left(\omega t+\frac{\pi}{4}\right)$
at $\mathrm{t}=\mathrm{t}_{1}, \mathrm{i}=\mathrm{i}_{\text {max }}$
$\mathrm{i}_{\text {max }}=\mathrm{i}_{\text {max }} \sin \left(\omega \mathrm{t}_{1}+\frac{\pi}{4}\right)$
$\omega t_{1}+\frac{\pi}{4}=\frac{\pi}{2}$
$\omega t_{1}+\frac{\pi}{4}$
$\frac{2 \pi}{\mathrm{~T}} \mathrm{t}_{1}=\frac{\pi}{4}$
$t_{1}=\frac{T}{8}$
$t_{1}=\frac{1}{8}\left(\frac{1}{f}\right)=\frac{1}{8}\left(\frac{1}{50}\right)$
$t_{1}=\frac{1000}{400} \mathrm{~m} \mathrm{sec}=2.5 \mathrm{~m} \mathrm{sec}$
6. In LCR circuit L and C are constant and R is increased then:
(1) Quality factor and resonant frequency both are unchanged.
(2) Quality factor is increased.
(3) Band width is increased.
(4) Quality factor remains unchanged

Ans. (3)
Sol. $\omega=\frac{1}{\sqrt{L C}}, Q=\frac{1}{R} \sqrt{\frac{L}{C}}$, Band width $=\frac{R}{L}$
7. In YDSE setup, distance between slits is $0.5 \mathrm{~mm} \&$ separation between slits plane \& screen is 0.5 m . Find the distance between $1^{\text {st }}$ maxima $\& 3^{\text {rd }}$ maxima if light used has wave length $5890 \AA$.
(1) $1178 \times 10^{-6} \mathrm{~m}$
(2) $1178 \times 10^{-7} \mathrm{~m}$
(3) $1178 \times 10^{-8} \mathrm{~m}$
(4) $5890 \times 10^{-7} \mathrm{~m}$

Ans. (1)
Sol. Distance between $1^{\text {st }} \& 3^{\text {rd }}$ maxima will be 3β.

$$
\begin{aligned}
& \therefore 2 \times \frac{\lambda D}{d}=2 \times 5890 \times 10^{-10} \times \frac{0.5}{0.5 \times 10^{-3}} \\
& =11780 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

8. A closed current carrying loop is placed in uniform magnetic field. Then in equilibrium shape of wire will be :
(1) straight
(2) unchanged
(3) circular and plane perpendicular to magnetic field
(4) Circular and plane parallel to magnetic field

Ans. (3)
9. A muon particle (mass $=207 \mathrm{~m}_{\mathrm{e}}$) revolves around hydrogen nucleus. Find its ionisation energy.? [$\mathrm{m}_{\mathrm{e}}=$ mass of electron]
(1) 13.6 eV
(2) 27.2 eV
(3) $13.6 \times 207 \mathrm{eV}$
(4) 331.8 eV

Ans. (Bonus)
Sol. $\quad E_{n}=-13.6 \times \frac{\mu}{m_{e}} \mathrm{eV}$
$\mu=\frac{\left(1836 \mathrm{~m}_{\mathrm{e}}\right)\left(207 \mathrm{~m}_{\mathrm{e}}\right)}{(1836+207) \mathrm{m}_{\mathrm{e}}}$
$=\frac{1836 \times 207}{2043}=186 \mathrm{~m}_{\mathrm{e}}$.
\therefore Ionisation energy $=13.6 \times 186 \mathrm{eV}$
10. An object is moving with constant acceleration. Choose the correct option.
(1)

(2)

(3)

(4)

Ans. (4)

Sol. $\mathrm{a}=$ constant
$v \propto t$
$x \propto t^{2}$
11. A ring of mass M is rotating with constant angular velocity ω about axis of rotation passing through centre and perpendicular to the plane of ring. Two particles each of mass m are placed gently diametrically at opposite position. Find new angular velocity.
(1) $\left(\frac{M+2 m}{M}\right) \omega$
(2) $\left(\frac{M \omega}{M+2 m}\right)$
(3) $\left(\frac{M-2 m}{M}\right) \omega$
(4) $\left(\frac{m \omega}{M+2 m}\right)$

Ans. (3)
Sol. Using angular momentum conservation
$\mathrm{L}_{\mathrm{i}}=\mathrm{MR}^{2} \omega$
$L_{f}=\left(M R^{2}+2 \mathrm{mR}^{2}\right) \omega^{\prime}$
$\omega^{\prime}=\left(\frac{M \omega}{M+2 m}\right)$
12. Electromagnetic wave is propagating in x direction. Magnetic field in space is given by $\overrightarrow{\mathrm{B}}=2 \times 10^{-8}(\mathrm{~T}) \hat{\mathrm{k}}$. What will be the value and direction of electric field.
(1) $0.6 \hat{j}$
(2) $6 \hat{j}$
(3) $0.6 \hat{\mathrm{k}}$
(4) $6 \hat{\mathrm{k}}$

Ans. (2)
Sol. $\mathrm{E}=\mathrm{CB}$
$\mathrm{E}=3 \times 10^{8} \times 2 \times 10^{-8}$
$\mathrm{E}=6$
direction of \vec{v} is $\vec{E} \times \vec{B}$
$\hat{\mathrm{i}}=\hat{\mathrm{j}} \times \hat{\mathrm{k}}$
so $\overrightarrow{\mathrm{E}}=6 \hat{\mathrm{j}}$
13. A machine staring from Rest delivers constant Power ' P '. Then distance travelled by it in time ' t ' is proportional to:-
(1) $t^{-3 / 2}$
(2) $t^{1 / 2}$
(3) $t^{3 / 2}$
(4) $\mathrm{t}^{-1 / 2}$

Ans. (3)
Sol. $\quad \mathrm{P}=\mathrm{Fv}$
$\mathrm{P}=\mathrm{mav}$
$P \int d t=m \int v d v$
$\mathrm{m} \frac{\mathrm{v}^{2}}{2}=\mathrm{Pt}$

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	6
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

$\mathrm{v}=\left(\frac{2 \mathrm{Pt}}{\mathrm{m}}\right)^{1 / 2}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\left(\frac{2 \mathrm{Pt}}{\mathrm{m}}\right)^{1 / 2}$
$x=\left(\frac{2 P}{m}\right)^{1 / 2} \frac{t^{3 / 2}}{\frac{3}{2}}$
$\mathrm{x} \propto \mathrm{t}^{3 / 2}$
14. An object is preforming SHM with time period 2 sec . If time taken by it to move from mean position to half of amplitude is $\frac{1}{\mathrm{~K}} \mathrm{sec}$. Then value of K is.
(1) 3
(2) 6
(3) 4
(4) 2

Ans. (2)
Sol. from 0 to $\frac{A}{2}$
time $=\frac{\mathrm{T}}{12} \mathrm{sec}$
$\frac{2}{12}=\frac{1}{6} \mathrm{sec}$
15. In given $\mathrm{P}-\mathrm{V}$ graph process CA is adiabatic. Find work done in process CA if gas is diatomic $(\gamma=$ 1.4) :

(1) -400 J
(2) -500 J
(3) 200
(4) 400

Ans. (2)
Sol. $\mathrm{W}=\frac{\mathrm{nR} \Delta \mathrm{T}}{1-\gamma}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{1-\gamma}=\frac{200 \times 3-4 \times 100}{1-1.4}=-500 \mathrm{~J}$

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	7
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

Unleashing Potential
16. Four identical solenoids are connected as shown in figure

If magnetic field in A is 3 T , evaluate magnetic field in C
(1) 1 T
(2) 9 T
(3) 12 T
(4) 6 T

Ans. (1)
Sol. $\quad \mathrm{B}_{\mathrm{A}}=\mu_{0} \mathrm{nI}=3 \mathrm{~T}$
$B_{C}=\mu_{0} n \frac{I}{3}$
$\mathrm{B}_{\mathrm{C}}=1 \mathrm{~T}$
17. In a wire $V=5.0 \mathrm{~V}, \mathrm{I}=2.00 \mathrm{~A}, \mathrm{~L}=10.0 \mathrm{~cm}$ and diameter $\mathrm{d}=5.00 \mathrm{~mm}$. Evaluate $\frac{\Delta \rho}{\rho} \times 100$?
(1) 3.9%
(2) 1.9%
(3) 2.9%
(4) 3%

Ans. (1)
Sol. $\frac{\Delta \rho}{\rho}=\frac{\Delta \mathrm{R}}{\mathrm{R}}+\frac{\Delta \ell}{\ell}+\frac{2 \Delta \mathrm{~d}}{\mathrm{~d}}$
$\frac{\Delta \rho}{\rho}=\frac{\Delta \mathrm{V}}{\mathrm{V}}+\frac{\Delta \mathrm{I}}{\mathrm{I}}+\frac{\Delta \ell}{\ell}+\frac{2 \Delta \mathrm{~d}}{\mathrm{~d}}$
$\frac{\Delta \rho}{\rho} \%=\left(\frac{0.1}{5}+\frac{0.01}{2}+\frac{0.1}{10}+2 \times \frac{0.01}{5}\right) \times 100$
$=2+0.5+1+0.4=3.9 \%$
18. \quad A is forming B and C independently if $A \rightarrow B$ with half life $=T_{1 / 2}(B)$ and if $A \rightarrow C$ with half life $\mathrm{T}_{1 / 2}(\mathrm{C})$ then what will be overall half life:
(1) $\frac{T_{1 / 2}(B) \times T_{1 / 2}(C)}{T_{1 / 2}(B)+T_{1 / 2}(C)}$
(2) $\frac{T_{1 / 2}(B)+T_{1 / 2}(C)}{T_{1 / 2}(B) \times T_{1 / 2}(C)}$
(3) $\frac{T_{1 / 2}(B) \times T_{1 / 2}(C)}{T_{1 / 2}(B)-T_{1 / 2}(C)}$
(4) $\frac{T_{1 / 2}(B)+T_{1 / 2}(C)}{T_{1 / 2}(B)-T_{1 / 2}(C)}$

Ans. (1)

Sol. $\quad-\frac{\mathrm{dN}_{\mathrm{A}}}{\mathrm{dt}}=\lambda_{\mathrm{B}} \mathrm{N}_{\mathrm{A}}+\lambda_{\mathrm{C}} \mathrm{N}_{\mathrm{A}}$

$$
\begin{aligned}
& =\left(\lambda_{\mathrm{B}}+\lambda_{\mathrm{C}}\right) \mathrm{N}_{\mathrm{A}}=\lambda_{\mathrm{eq}} \mathrm{~N}_{\mathrm{A}} \\
& \lambda \mathrm{eq}=\lambda \mathrm{B}+\lambda \mathrm{C} \\
& \frac{\ln 2}{\mathrm{~T}_{\mathrm{eq}}}=\frac{\ln 2}{\mathrm{~T}_{1 / 2 \mathrm{~B}}}+\frac{\ln 2}{\mathrm{~T}_{1 / 2 \mathrm{C}}} \Rightarrow \frac{1}{\mathrm{~T}_{\mathrm{eq}}}=\frac{1}{\mathrm{~T}_{1 / 2 \mathrm{~B}}}+\frac{1}{\mathrm{~T}_{1 / 2 \mathrm{C}}}
\end{aligned}
$$

$$
\mathrm{T}_{\mathrm{eq}}=\frac{\mathrm{T}_{1 / 2 \mathrm{~B}} \times \mathrm{T}_{1 / 2 \mathrm{C}}}{\mathrm{~T}_{1 / 2 \mathrm{~B}}+\mathrm{T}_{1 / 2 \mathrm{C}}}
$$

19. Two wires A and B of same material having elongation 2 mm and 4 mm respectively on applying 2 N take. If radius of B is four times the radius of A and ratio of length of A is to B in the form of $\frac{1}{x}$ then the value of x is

Ans. 32.00
Sol. $\frac{F}{A}=Y \frac{\Delta L}{L}$
$\frac{\mathrm{F}}{\pi \mathrm{r}_{\mathrm{A}}^{2}}=\mathrm{Y} \frac{\Delta \mathrm{L}_{\mathrm{A}}}{\mathrm{L}_{\mathrm{A}}}$ \qquad
$\frac{F}{\pi r_{B}^{2}}=Y \frac{\Delta L_{B}}{L_{B}}$
$\left(\frac{r_{\mathrm{B}}}{\mathrm{r}_{\mathrm{A}}}\right)^{2}=\frac{\Delta \mathrm{L}_{\mathrm{A}}}{\Delta \mathrm{L}_{\mathrm{B}}} \times \frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{L}_{\mathrm{B}}} \quad \mathrm{r}_{\mathrm{B}}=4 \mathrm{r}_{\mathrm{A}}$
$16=\frac{2}{4} \times \frac{L_{B}}{L_{A}} \quad \frac{r_{B}}{r_{A}}=4$
$\frac{L_{B}}{L_{A}}=32$
$\frac{\mathrm{a}}{\mathrm{b}}=\frac{1}{32}$
$\mathrm{x}=32$
20. A man is swimming in a river at an angle 120° with river flow. Speed of man in still water is $10 \mathrm{~m} / \mathrm{s}$. If he reaches the other bank exactly opposite to origin point, find speed of flow of river (in m / s)

Ans. 5.00

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	9
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

Net speed perpendicular to line.
AB must be zero.
$\therefore \mathrm{v}_{\mathrm{m}} \sin 30=\mathrm{V}_{\mathrm{R}}$
$\therefore \mathrm{v}_{\mathrm{r}}=5 \mathrm{~m} / \mathrm{s}$
21. If ratio of de-Broglie wavelength of particle and electron is $2: 1$ and ratio of their velocity is 4:1. Then
(1) mass of particle is 8 times that of electron
(2) mass of electron is 8 times that of particle
(3) mass of electron is 16 times that of particle
(4) mass of particle is 16 times that of electron

Ans. (2)
Sol. $\frac{\lambda_{p}}{\lambda_{e}}=\frac{\frac{h}{m_{p} v_{p}}}{\frac{\lambda}{m_{e} v_{e}}} \Rightarrow \frac{2}{1}=\frac{m_{e} v_{e}}{m_{p} v_{p}}=\frac{m_{e}}{m_{p}} \times \frac{1}{4}$
$\frac{m_{e}}{m_{p}}=8$
22. In the millikan oil drop experiment radius of drop is $r=2 \mathrm{~mm}$ and density $\rho=3 \mathrm{gm} / \mathrm{cm}^{3}$. If the applied electric field is $\mathrm{E}=3.55 \times 10^{5} \mathrm{~N} / \mathrm{C}$. Find excess electrons.
(1) 1.769×10^{10}
(2) 1.567×10^{10}
(3) 1.769×10^{12}
(4) 1.567×10^{12}

Ans. (1)
Sol. $\mathrm{mg}=\mathrm{qE}$
$q=\frac{m g}{E}$
$\mathrm{N}=\frac{\mathrm{mg}}{\mathrm{eE}}=\frac{3 \times 10^{-3} \times 10 \times \frac{4}{3} \pi \times 8 \times 10^{-9}}{10^{-6} \times 3.55 \times 10^{5} \times 1.6 \times 10^{-19}}=1.769 \times 10^{10}$
23. A partially filled capacitor has half of its space filed with dielectric of relative permittivity 10 . Equivalent capacitance if area of plates is $100 \mathrm{~m}^{2}$ and distance between plates is 10 m is given as xpF . Find x ? $\left(\varepsilon_{0}=8.85 \times 10^{-12}\right)$

Ans. 161.00
Sol. $\quad \mathrm{C}_{2}=\frac{\epsilon_{0} \times 100}{5}=20 \varepsilon_{0}$

$$
\begin{aligned}
\mathrm{C}_{1}=10 \times \frac{\epsilon_{0} \times 100}{5}=200 \varepsilon_{0} \quad \mathrm{C}_{\mathrm{eq}} & =\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}} \\
\mathrm{C}_{\mathrm{eq}} & =\frac{4000 \epsilon_{0}}{220} \\
& =160.90 \times 10^{-12}=161 \mathrm{pF}
\end{aligned}
$$

24. A ball is released from point A. Evaluate its velocity (m / s) when it reaches to point B (assume frictionless surface):

Ans. $\quad 10.00$
Sol. $\operatorname{mg}(5)=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{V}=10 \mathrm{~m} / \mathrm{s}$.
25. Initially a body of mass 10 kg is moving along x-axis with velocity $10 \sqrt{3} \mathrm{~m} / \mathrm{s}$. It collides with another body of mass 20 kg and comes to rest. The 20 kg mass object disintegrates in 2 parts each of mass 10 kg . One part moves along y -axis with velocity $10 \mathrm{~m} / \mathrm{s}$ and another at 30° with x -axis. Evaluate the velocity of the object which moves at angle 30° with x -axis.
Ans. 20.00

Relíable	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	11
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

Sol. $\quad|\overrightarrow{\mathrm{v}}|=20 \mathrm{~m} / \mathrm{s}$
$10 \times 10 \sqrt{3} \hat{i}=10 \times 10 \hat{j}+10 \vec{v}$
$\frac{100 \sqrt{3} \hat{i}-100 \hat{\mathrm{j}}}{10}=\overrightarrow{\mathrm{v}}$
$\overrightarrow{\mathrm{v}}=10 \sqrt{3} \hat{\mathrm{i}}-10 \hat{\mathrm{j}}$
26. A bullet of mass 0.1 kg initially moving with a velocity $10 \mathrm{~m} / \mathrm{sec}$ and then passes through a wooden block and comes to rest with uniform deceleration by travelling 50 cm . If the force exerted by wooden block on bullet is x newton, then find x .
Ans. $\quad 10.00$
Sol. $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as
$0=100+2(-a)\left(\frac{1}{2}\right)$
$\mathrm{a}=100 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}=\mathrm{ma}=(0.1)(100)$
$\mathrm{F}=10 \mathrm{~N}$
27. A capacitor of capacitance $3 \mu \mathrm{~F}$ has charge 30 nC is connected to a resistance of 5Ω. If current in circuit just after closing the switch is $\mathrm{x} A$. Then x is :
Ans. 2.00
Sol.

$$
\begin{aligned}
& \mathrm{q}=\mathrm{Qe}^{\frac{-\mathrm{t}}{\mathrm{RC}}} \\
& \mathrm{I}=\frac{\mathrm{Q}}{\mathrm{RC}} \mathrm{e}^{\frac{-\mathrm{t}}{\mathrm{RC}}} \\
& \mathrm{I}(\mathrm{t}=0)=\frac{\mathrm{Q}}{\mathrm{RC}}=\frac{30}{5 \times 3}=2 \mathrm{~A}
\end{aligned}
$$

28. Coming soon.
29. Coming soon.
30. Coming soon.

