FINAL JEE-MAIN EXAMINATION - MARCH, 2021
(Held On Tuesday 16 ${ }^{\text {th }}$ March, 2021) TIME: 3:00 PM to 6:00 PM

MATHEMATIGS

SECTION-A

1. The maximum value of
$f(x)=\left|\begin{array}{ccc}\sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x\end{array}\right|, x \in R$ is:
(1) $\sqrt{7}$
(2) $\frac{3}{4}$
(3) $\sqrt{5}$
(4) 5

Official Ans by NTA (3)
2. Let A denote the event that a 6 -digit integer formed by $0,1,2,3,4,5,6$ without repetitions, be divisible by 3 . Then probability of event A is equal to :
(1) $\frac{9}{56}$
(2) $\frac{4}{9}$
(3) $\frac{3}{7}$
(4) $\frac{11}{27}$

Official Ans by NTA (2)
3. Let $\alpha \in R$ be such that the function
$f(x)= \begin{cases}\frac{\cos ^{-1}\left(1-\{x\}^{2}\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^{3}}, & x \neq 0 \\ \alpha, & x=0\end{cases}$
is continuous at $\mathrm{x}=0$, where $\{\mathrm{x}\}=\mathrm{x}-[\mathrm{x}]$, $[\mathrm{x}]$ is the greatest integer less than or equal to x. Then :
(1) $\alpha=\frac{\pi}{\sqrt{2}}$
(2) $\alpha=0$
(3) no such α exists
(4) $\alpha=\frac{\pi}{4}$

Official Ans by NTA (3)

TEST PAPER WHIH ANSWER

4. If (x, y, z) be an arbitrary point lying on a plane P which passes through the point ($42,0,0$), $(0,42,0)$ and $(0,0,42)$, then the value of expression
$3+\frac{x-11}{(y-19)^{2}(z-12)^{2}}+\frac{y-19}{(x-11)^{2}(z-12)^{2}}$
$+\frac{\mathrm{z}-12}{(\mathrm{x}-11)^{2}(\mathrm{y}-19)^{2}}-\frac{\mathrm{x}+\mathrm{y}+\mathrm{z}}{14(\mathrm{x}-11)(\mathrm{y}-19)(\mathrm{z}-12)}$
(1) 0
(2) 3
(3) 39
(4) -45

Official Ans by NTA (2)
5. Consider the integral
$I=\int_{0}^{10} \frac{[x] e^{[x]}}{e^{x-1}} d x$,
where $[x]$ denotes the greatest integer less than or equal to x. Then the value of I is equal to:
(1) $9(\mathrm{e}-1)$
(2) $45(\mathrm{e}+1)$
(3) $45(\mathrm{e}-1)$
(4) $9(e+1)$

Official Ans by NTA (3)
6. Let C be the locus of the mirror image of a point on the parabola $y^{2}=4 x$ with respect to the line $y=x$. Then the equation of tangent to C at $P(2,1)$ is :
(1) $x-y=1$
(2) $2 x+y=5$
(3) $x+3 y=5$
(4) $x+2 y=4$

Official Ans by NTA (1)
7. If $y=y(x)$ is the solution of the differential equation $\frac{d y}{d x}+(\tan x) y=\sin x, 0 \leq x \leq \frac{\pi}{3}$, with $y(0)=0$, then $y\left(\frac{\pi}{4}\right)$ equal to :
(1) $\frac{1}{4} \log _{e} 2$
(2) $\left(\frac{1}{2 \sqrt{2}}\right) \log _{\mathrm{e}} 2$
(3) $\log _{e} 2$
(4) $\frac{1}{2} \log _{\mathrm{e}} 2$

Official Ans by NTA (2)
8. Let $\mathrm{A}=\{2,3,4,5, \ldots, 30\}$ and ' \simeq ' be an equivalence relation on $\mathrm{A} \times \mathrm{A}$, defined by $(a, b) \simeq(c, d)$, if and only if $a d=b c$. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4,3)$ is equal to :
(1) 5
(2) 6
(3) 8
(4) 7

Official Ans by NTA (4)
9. Let the lengths of intercepts on x-axis and y-axis made by the circle $x^{2}+y^{2}+a x+2 a y+c=0$, $(a<0)$ be $2 \sqrt{2}$ and $2 \sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line $x+2 y=0$, is euqal to :
(1) $\sqrt{11}$
(2) $\sqrt{7}$
(3) $\sqrt{6}$
(4) $\sqrt{10}$

Official Ans by NTA (3)
10. The least value of $|z|$ where z is complex number which satisfies the inequality
$\exp \left(\frac{(|z|+3)(|z|-1)}{||z|+1|} \log _{e} 2\right) \geq \log _{\sqrt{2}}|5 \sqrt{7}+9 i|$, $\mathrm{i}=\sqrt{-1}$, is equal to :
(1) 3
(2) $\sqrt{5}$
(3) 2
(4) 8

Official Ans by NTA (1)
11. Consider a rectangle ABCD having 5, 7, 6, 9 points in the interior of the line segments $A B$, $\mathrm{CD}, \mathrm{BC}, \mathrm{DA}$ respectively. Let α be the number of triangles having these points from different sides as vertices and β be the number of quadrilaterals having these points from different sides as vertices. Then $(\beta-\alpha)$ is equal to :
(1) 795
(2) 1173
(3) 1890
(4) 717

Official Ans by NTA (4)
12. If the point of intersections of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=4 b, b>4$ lie on the curve $y^{2}=3 x^{2}$, then b is equal to:
(1) 12
(2) 5
(3) 6
(4) 10

Official Ans by NTA (1)
13. Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy $\sin ^{-1}\left(\frac{3 x}{5}\right)+\sin ^{-1}\left(\frac{4 x}{5}\right)=\sin ^{-1} x$ is equal to:
(1) 2
(2) 1
(3) 3
(4) 0

Official Ans by NTA (3)
14. Let $A(-1,1), B(3,4)$ and $C(2,0)$ be given three points. A line $y=m x, m>0$, intersects lines AC and BC at point P and Q respectively. Let A_{1} and A_{2} be the areas of $\triangle A B C$ and $\triangle P Q C$ respectively, such that $A_{1}=3 A_{2}$, then the value of m is equal to :
(1) $\frac{4}{15}$
(2) 1
(3) 2
(4) 3

Official Ans by NTA (2)
15. Let f be a real valued function, defined on $R-\{-1,1\}$ and given by
$f(x)=3 \log _{e}\left|\frac{x-1}{x+1}\right|-\frac{2}{x-1}$.
Then in which of the following intervals, function $f(x)$ is increasing?
(1) $(-\infty,-1) \cup\left(\left[\frac{1}{2}, \infty\right)-\{1\}\right)$
(2) $(-\infty, \infty)-\{-1,1\}$
(3) $\left(-1, \frac{1}{2}\right]$
(4) $\left(-\infty, \frac{1}{2}\right]-\{-1\}$

Official Ans by NTA (1)
16. Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}$ where $\mathrm{S}=(0, \infty)$ be a twice differentiable function such that $f(x+1)=x f(x)$. If $g: S \rightarrow R$ be defined as $g(x)=\log _{\mathrm{e}} \mathrm{f}(\mathrm{x})$, then the value of $\left|g^{\prime \prime}(5)-g^{\prime \prime}(1)\right|$ is equal to :
(1) $\frac{205}{144}$
(2) $\frac{197}{144}$
(3) $\frac{187}{144}$
(4) 1

Official Ans by NTA (1)
17. Let $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}$ be a quadratic polynomial with real coefficients such that $\int_{0}^{1} \mathrm{P}(\mathrm{x}) \mathrm{dx}=1$ and $P(x)$ leaves remainder 5 when it is divided by $(x-2)$. Then the value of $9(b+c)$ is equal to:
(1) 9
(2) 15
(3) 7
(4) 11

Official Ans by NTA (3)
18. If the foot of the perpendicular from point $(4,3,8)$ on the line $L_{1}: \frac{x-a}{l}=\frac{y-2}{3}=\frac{z-b}{4}$, $l \neq 0$ is $(3,5,7)$, then the shortest distance between the line L_{1} and line $L_{2}: \frac{x-2}{3}=\frac{\mathrm{y}-4}{4}=\frac{\mathrm{z}-5}{5}$ is equal to :
(1) $\frac{1}{2}$
(2) $\frac{1}{\sqrt{6}}$
(3) $\sqrt{\frac{2}{3}}$
(4) $\frac{1}{\sqrt{3}}$

Official Ans by NTA (2)
19. Let C_{1} be the curve obtained by the solution of differential equation $2 x y \frac{d y}{d x}=y^{2}-x^{2}, x>0$. Let the curve C_{2} be the solution of $\frac{2 x y}{x^{2}-y^{2}}=\frac{d y}{d x}$. If both the curves pass through $(1,1)$, then the area enclosed by the curves C_{1} and C_{2} is equal to :
(1) $\pi-1$
(2) $\frac{\pi}{2}-1$
(3) $\pi+1$
(4) $\frac{\pi}{4}+1$

Official Ans by NTA (2)
20. Let $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=2 \hat{i}-3 \hat{j}+5 \hat{k}$. If $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}} .(\alpha \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})=3$ and $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-\alpha \hat{\mathrm{k}})=-1, \alpha \in \mathrm{R}$, then the value of $\alpha+|\vec{r}|^{2}$ is equal to :
(1) 9
(2) 15
(3) 13
(4) 11

Official Ans by NTA (2)

SECTION-B

1. If the distance of the point $(1,-2,3)$ from the plane $\mathrm{x}+2 \mathrm{y}-3 \mathrm{z}+10=0$ measured parallel to the line, $\frac{x-1}{3}=\frac{2-y}{m}=\frac{z+3}{1}$ is $\sqrt{\frac{7}{2}}$, then the value of $\mid \mathrm{ml}$ is equal to \qquad _.
Official Ans by NTA (2)
2. Consider the statistics of two sets of observations as follows :

	Size	Mean	Variance
Observation I	10	2	2
Observation II	n	3	1

If the variance of the combined set of these two observations is $\frac{17}{9}$, then the value of n is equal to
\qquad
Official Ans by NTA (5)
3. Let $A=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ and $B=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ be two 2×1 matrices with real entries such that $\mathrm{A}=\mathrm{XB}$, where $X=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & -1 \\ 1 & k\end{array}\right]$, and $k \in R$. If $\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}=\frac{2}{3}\left(\mathrm{~b}_{1}^{2}+\mathrm{b}_{2}^{2}\right)$ and $\left(\mathrm{k}^{2}+1\right) \mathrm{b}_{2}^{2} \neq-2 \mathrm{~b}_{1} \mathrm{~b}_{2}$, then the value of k is \qquad _.
Official Ans by NTA (1)
4. For real numbers α, β, γ and δ, if

$$
\begin{aligned}
& \int \frac{\left(x^{2}-1\right)+\tan ^{-1}\left(\frac{x^{2}+1}{x}\right)}{\left(x^{4}+3 x^{2}+1\right) \tan ^{-1}\left(\frac{x^{2}+1}{x}\right)} d x \\
& =\alpha \log _{e}\left(\tan ^{-1}\left(\frac{x^{2}+1}{x}\right)\right) \\
& +\beta \tan ^{-1}\left(\frac{\gamma\left(x^{2}-1\right)}{x}\right)+\delta \tan ^{-1}\left(\frac{x^{2}+1}{x}\right)+C
\end{aligned}
$$

where C is an arbitrary constant, then the value of $10(\alpha+\beta \gamma+\delta)$ is equal to \qquad _.
Official Ans by NTA (6)
5. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as
$f(x)=\left\{\begin{array}{cc}x+a, & x<0 \\ |x-1|, & x \geq 0\end{array}\right.$ and
$g(x)=\left\{\begin{array}{cc}x+1, & x<0 \\ (x-1)^{2}+b, & x \geq 0\end{array}\right.$
where a, b are non-negative real numbers. If $(\operatorname{gof})(x)$ is continuous for all $x \in R$, then $a+b$ is equal to \qquad _.
Official Ans by NTA (1)
6. Let $\frac{1}{16}$, a and b be in G.P. and $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, 6$ be in A.P., where $\mathrm{a}, \mathrm{b}>0$. Then $72(\mathrm{a}+\mathrm{b})$ is equal to \qquad _.

Official Ans by NTA (14)

7. In $\triangle \mathrm{ABC}$, the lengths of sides AC and AB are 12 cm and 5 cm , respectively. If the area of $\triangle \mathrm{ABC}$ is $30 \mathrm{~cm}^{2}$ and R and r are respectively the radii of circumcircle and incircle of $\triangle \mathrm{ABC}$, then the value of $2 R+r$ (in cm) is equal to
\qquad _.

Official Ans by NTA (15)

8. Let n be a positive integer. Let
$A=\sum_{k=0}^{n}(-1)^{k} n_{C_{k}}\left[\left(\frac{1}{2}\right)^{\mathrm{k}}+\left(\frac{3}{4}\right)^{\mathrm{k}}+\left(\frac{7}{8}\right)^{\mathrm{k}}+\left(\frac{15}{16}\right)^{\mathrm{k}}+\left(\frac{31}{32}\right)^{\mathrm{k}}\right]$

If $63 \mathrm{~A}=1-\frac{1}{2^{30}}$, then n is equal to \qquad -.

Official Ans by NTA (6)
9. Let $\overrightarrow{\mathrm{c}}$ be a vector perpendicular to the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.

If $\vec{c} \cdot(\hat{i}+\hat{j}+3 \hat{k})=8$ then the value of $\vec{c} \cdot(\vec{a} \times \vec{b})$ is equal to \qquad _.
Official Ans by NTA (28)
10. Let
$S_{n}(x)=\log _{a^{1 / 2}} x+\log _{a^{1 / 3}} x+\log _{a^{1 / 6}} x$

$$
+\log _{a^{1 / 11}} x+\log _{a^{1 / 18}} x+\log _{a^{1 / 27}} x+\ldots .
$$

up to n-terms, where $a>1$. If $S_{24}(x)=1093$ and $S_{12}(2 x)=265$, then value of a is equal to
\qquad _.

Official Ans by NTA (16)

