FINAL JEE-MAIN EXAMINATION - MARCH, 2021
 (Held On Thursday 18 ${ }^{\text {th }}$ March, 2021) TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1. Let $y=y(x)$ be the solution of the differential equation $\frac{d y}{d x}=(y+1)\left((y+1) e^{x^{2} / 2}-x\right), 0<x<2.1$, with $y(2)=0$. Then the value of $\frac{d y}{d x}$ at $\mathrm{x}=1$ is equal to :
(1) $\frac{-\mathrm{e}^{3 / 2}}{\left(\mathrm{e}^{2}+1\right)^{2}}$
(2) $-\frac{2 \mathrm{e}^{2}}{\left(1+\mathrm{e}^{2}\right)^{2}}$
(3) $\frac{\mathrm{e}^{5 / 2}}{\left(1+\mathrm{e}^{2}\right)^{2}}$
(4) $\frac{5 \mathrm{e}^{1 / 2}}{\left(\mathrm{e}^{2}+1\right)^{2}}$

Official Ans. by NTA (1)
2. In a triangle ABC , if $|\overrightarrow{\mathrm{BC}}|=8,|\overrightarrow{\mathrm{CA}}|=7$, $|\overrightarrow{\mathrm{AB}}|=10$, then the projection of the vector $\overrightarrow{\mathrm{AB}}$ on $\overrightarrow{\mathrm{AC}}$ is equal to :
(1) $\frac{25}{4}$
(2) $\frac{85}{14}$
(3) $\frac{127}{20}$
(4) $\frac{115}{16}$

Official Ans. by NTA (2)
3. Let the system of linear equations
$4 x+\lambda y+2 z=0$
$2 \mathrm{x}-\mathrm{y}+\mathrm{z}=0$
$\mu \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=0, \lambda, \mu \in \mathrm{R}$.
has a non-trivial solution. Then which of the following is true ?
(1) $\mu=6, \lambda \in R$
(2) $\lambda=2, \mu \in R$
(3) $\lambda=3, \mu \in R$
(4) $\mu=-6, \lambda \in R$

Official Ans. by NTA (1)

TEST PAPER WHH ANSWER

4. Let $f: \mathrm{R}-\{3\} \rightarrow \mathrm{R}-\{1\}$ be defined by $f(\mathrm{x})=\frac{\mathrm{x}-2}{\mathrm{x}-3}$. Let $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be given as $g(x)=2 x-3$. Then, the sum of all the values of x for which $f^{-1}(\mathrm{x})+\mathrm{g}^{-1}(\mathrm{x})=\frac{13}{2}$ is equal to
(1) 7
(2) 2
(3) 5
(4) 3

Official Ans. by NTA (3)
5. Let the centroid of an equilateral triangle $A B C$ be at the origin. Let one of the sides of the equilateral triangle be along the straight line $x+y=3$. If R and r be the radius of circumcircle and incircle respectively of $\triangle A B C$, then $(R+r)$ is equal to :
(1) $\frac{9}{\sqrt{2}}$
(2) $7 \sqrt{2}$
(3) $2 \sqrt{2}$
(4) $3 \sqrt{2}$

Official Ans. by NTA (1)
6. Consider a hyperbola $H: x^{2}-2 y^{2}=4$. Let the tangent at a point $\mathrm{P}(4, \sqrt{6})$ meet the x -axis at Q and latus rectum at $\mathrm{R}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{x}_{1}>0$. If F is a focus of H which is nearer to the point P, then the area of $\triangle \mathrm{QFR}$ is equal to
(1) $4 \sqrt{6}$
(2) $\sqrt{6}-1$
(3) $\frac{7}{\sqrt{6}}-2$
(4) $4 \sqrt{6}-1$

Official Ans. by NTA (3)
7. If P and Q are two statements, then which of the following compound statement is a tautology?
(1) $((P \Rightarrow Q) \wedge \sim Q) \Rightarrow Q$
(2) $((\mathrm{P} \Rightarrow \mathrm{Q}) \wedge \sim \mathrm{Q}) \Rightarrow \sim \mathrm{P}$
(3) $((\mathrm{P} \Rightarrow \mathrm{Q}) \wedge \sim \mathrm{Q}) \Rightarrow \mathrm{P}$
(4) $((\mathrm{P} \Rightarrow \mathrm{Q}) \wedge \sim \mathrm{Q}) \Rightarrow(\mathrm{P} \wedge \mathrm{Q})$

Official Ans. by NTA (2)
8. Let $g(x)=\int_{0}^{x} f(t) d t$, where f is continuous function in $[0,3]$ such that $\frac{1}{3} \leq f(\mathrm{t}) \leq 1$ for all $\mathrm{t} \in[0,1]$ and $0 \leq f(\mathrm{t}) \leq \frac{1}{2}$ for all $\mathrm{t} \in(1,3]$. The largest possible interval in which $g(3)$ lies is :
(1) $\left[-1,-\frac{1}{2}\right]$
(2) $\left[-\frac{3}{2},-1\right]$
(3) $\left[\frac{1}{3}, 2\right]$
(4) $[1,3]$

Official Ans. by NTA (3)
9. Let S_{1} be the sum of first $2 n$ terms of an arithmetic progression. Let S_{2} be the sum of first $4 n$ terms of the same arithmetic progression. If $\left(S_{2}-S_{1}\right)$ is 1000 , then the sum of the first $6 n$ terms of the arithmetic progression is equal to:
(1) 1000
(2) 7000
(3) 5000
(4) 3000

Official Ans. by NTA (4)
10. Let a complex number be $\mathrm{w}=1-\sqrt{3} i$. Let another complex number z be such that $\mathrm{lzwl}=1$ and $\arg (z)-\arg (w)=\frac{\pi}{2}$. Then the area of the triangle with vertices origin, z and w is equal to :
(1) 4
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) 2

Official Ans. by NTA (2)
11. Let in a series of 2 n observations, half of them are equal to a and remaining half are equal to -a . Also by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively. Then the value of $a^{2}+b^{2}$ is equal to :
(1) 425
(2) 650
(3) 250
(4) 925

Official Ans. by NTA (1)
12. Let $S_{1}: x^{2}+y^{2}=9$ and $S_{2}:(x-2)^{2}+y^{2}=1$. Then the locus of center of a variable circle S which touches S_{1} internally and S_{2} externally always passes through the points :
(1) $(0, \pm \sqrt{3})$
(2) $\left(\frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)$
(3) $\left(2, \pm \frac{3}{2}\right)$
(4) $(1, \pm 2)$

Official Ans. by NTA (3)
13. Let \vec{a} and \vec{b} be two non-zero vectors perpendicular to each other and $|\vec{a}|=|\vec{b}|$. If $|\vec{a} \times \vec{b}|=|\vec{a}|$, then the angle between the vectors $(\vec{a}+\vec{b}+(\vec{a} \times \vec{b}))$ and \vec{a} is equal to :
(1) $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(2) $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(3) $\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(4) $\sin ^{-1}\left(\frac{1}{\sqrt{6}}\right)$

Official Ans. by NTA (2)
14. Let in a Binomial distribution, consisting of 5 independent trials, probabilities of exactly 1 and 2 successes be 0.4096 and 0.2048 respectively. Then the probability of getting exactly 3 successes is equal to :
(1) $\frac{32}{625}$
(2) $\frac{80}{243}$
(3) $\frac{40}{243}$
(4) $\frac{128}{625}$

Official Ans. by NTA (1)
15. Let a tangent be drawn to the ellipse $\frac{x^{2}}{27}+y^{2}=1$ at $(3 \sqrt{3} \cos \theta, \sin \theta)$ where $\theta \in\left(0, \frac{\pi}{2}\right)$. Then the value of θ such that the sum of intercepts on axes made by this tangent is minimum is equal to :
(1) $\frac{\pi}{8}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{6}$
(4) $\frac{\pi}{3}$

Official Ans. by NTA (3)
16. Define a relation R over a class of $n \times n$ real matrices A and B as "ARB iff there exists a non-singular matrix P such that $\mathrm{PAP}^{-1}=\mathrm{B}^{\prime \prime}$. Then which of the following is true ?
(1) R is symmetric, transitive but not reflexive,
(2) R is reflexive, symmetric but not transitive
(3) R is an equivalence relation
(4) R is reflexive, transitive but not symmetric Official Ans. by NTA (3)
17. A pole stands vertically inside a triangular park ABC. Let the angle of elevation of the top of the pole from each corner of the park be $\frac{\pi}{3}$. If the radius of the circumcircle of $\Delta \mathrm{ABC}$ is 2 , then the height of the pole is equal to :
(1) $\frac{2 \sqrt{3}}{3}$
(2) $2 \sqrt{3}$
(3) $\sqrt{3}$
(4) $\frac{1}{\sqrt{3}}$

Official Ans. by NTA (2)
18. If $15 \sin ^{4} \alpha+10 \cos ^{4} \alpha=6$, for some $\alpha \in R$, then the value of $27 \sec ^{6} \alpha+8 \operatorname{cosec}^{6} \alpha$ is equal to :
(1) 350
(2) 500
(3) 400
(4) 250

Official Ans. by NTA (4)
19. The area bounded by the curve $4 y^{2}=x^{2}(4-x)(x-2)$ is equal to :
(1) $\frac{\pi}{8}$
(2) $\frac{3 \pi}{8}$
(3) $\frac{3 \pi}{2}$
(4) $\frac{\pi}{16}$

Official Ans. by NTA (3)
20. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined as
$f(x)=\left\{\begin{array}{cc}\frac{\sin (a+1) x+\sin 2 x}{2 x} & , \text { if } x<0 \\ b & , \text { if } x=0 \\ \frac{\sqrt{x+b x^{3}}-\sqrt{x}}{b x^{5 / 2}} & , \text { if } x>0\end{array}\right.$

If f is continuous at $\mathrm{x}=0$, then the value of $\mathrm{a}+\mathrm{b}$ is equal to :
(1) $-\frac{5}{2}$
(2) -2
(3) -3
(4) $-\frac{3}{2}$

Official Ans. by NTA (4)

SECTION-B

1. If $f(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are two polynomials such that the polynomial $\mathrm{P}(\mathrm{x})=f\left(\mathrm{x}^{3}\right)+\mathrm{xg}\left(\mathrm{x}^{3}\right)$ is divisible by $x^{2}+x+1$, then $P(1)$ is equal to \qquad .
Official Ans. by NTA (0)
2. Let I be an identity matrix of order 2×2 and $P=\left[\begin{array}{ll}2 & -1 \\ 5 & -3\end{array}\right]$. Then the value of $n \in N$ for which $\mathrm{P}^{\mathrm{n}}=5 \mathrm{I}-8 \mathrm{P}$ is equal to \qquad _.

Official Ans. by NTA (6)
3. If $\sum_{\mathrm{r}=1}^{10} \mathrm{r}!\left(\mathrm{r}^{3}+6 \mathrm{r}^{2}+2 \mathrm{r}+5\right)=\alpha(11!)$, then the value of α is equal to \qquad _.

Official Ans. by NTA (160)
4. The term independent of x in the expansion of $\left[\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right]^{10}, x \neq 1$, is equal to
\qquad -.
Official Ans. by NTA (210)
5. Let $P(x)$ be a real polynomial of degree 3 which vanishes at $x=-3$. Let $P(x)$ have local minima at $\mathrm{x}=1$, local maxima at $\mathrm{x}=-1$ and $\int_{-1}^{1} P(x) d x=18$, then the sum of all the coefficients of the polynomial $\mathrm{P}(\mathrm{x})$ is equal to
\qquad _.

Official Ans. by NTA (8)

6. Let the mirror image of the point $(1,3, a)$ with respect to the plane $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})-\mathrm{b}=0$ be $(-3,5,2)$. Then the value of $|a+b|$ is equal to
\qquad _.

Official Ans. by NTA (1)
7. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ satisfy the equation $f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) \cdot f(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ and $\mathrm{f}(\mathrm{x}) \neq 0$ for any $\mathrm{x} \in \mathrm{R}$. If Ihe function f is differentiable at $x=0$ and $f^{\prime}(0)=3$, then
$\lim _{h \rightarrow 0} \frac{1}{h}(f(h)-1)$ is equal to \qquad -.

Official Ans. by NTA (3)
8. Let ${ }^{n} C_{r}$ denote the binomial coefficient of x^{r} in the expansion of $(1+x)^{n}$.

If $\sum_{\mathrm{k}=0}^{10}\left(2^{2}+3 \mathrm{k}\right)^{\mathrm{n}} \mathrm{C}_{\mathrm{k}}=\alpha .3^{10}+\beta .2^{10}, \alpha, \beta \in \mathrm{R}$, then $\alpha+\beta$ is equal to \qquad .
Official Ans. by NTA (19)

Allen Answer (Bonus)

9. Let P be a plane containing the line $\frac{x-1}{3}=\frac{y+6}{4}=\frac{z+5}{2}$ and parallel to the line $\frac{x-3}{4}=\frac{y-2}{-3}=\frac{z+5}{7}$. If the point $(1,-1, \alpha)$ lies on the plane P, then the value of $|5 \alpha|$ is equal to \qquad _.
Official Ans. by NTA (38)
10. Let $y=y(x)$ be the solution of the differential equation $x d y-y d x=\sqrt{\left(x^{2}-y^{2}\right)} d x, x \geq 1$, with $y(1)=0$. If the area bounded by the line $x=1, x=e^{\pi}, y=0$ and $y=y(x)$ is $\alpha e^{2 \pi}+\beta$, then the value of $10(\alpha+\beta)$ is equal to \qquad _.

Official Ans. by NTA (4)

