	FINAL JEE-MAIN EXAM (Held On Thursday 18 th March, 202	TION – MARCH, 2021 TIME: 3:00 PM to 6:00 PM	
	MATHEMATICS	·	TEST PAPER WITH ANSWER
	SECTION-A	4.	Let $f : \mathbb{R} - \{3\} \rightarrow \mathbb{R} - \{1\}$ be defined by
1.	Let $y = y(x)$ be the solution of the differential equation $\frac{dy}{dx} = (y+1)((y+1)e^{x^2/2} - x), 0 < x < 2.1,$		$f(x) = \frac{x-2}{x-3}$. Let $g : R \to R$ be given as g(x) = 2x - 3. Then, the sum of all the values
	with $y(2) = 0$. Then the value of $\frac{dy}{dx}$ at		of x for which $f^{-1}(x) + g^{-1}(x) = \frac{13}{2}$ is equal to
	x = 1 is equal to : (1) $\frac{-e^{3/2}}{(e^2 + 1)^2}$ (2) $-\frac{2e^2}{(1 + e^2)^2}$ (3) $\frac{e^{5/2}}{(1 + e^2)^2}$ (4) $\frac{5e^{1/2}}{(e^2 + 1)^2}$	5.	(1) 7 (2) 2 (3) 5 (4) 3 Official Ans. by NTA (3) Let the centroid of an equilateral triangle ABC be at the origin. Let one of the sides of the equilateral triangle be along the straight line x + y = 3. If R and r be the radius of circumcircle
	Official Ans. by NTA (1)		and incircle respectively of $\triangle ABC$, then $(R + r)$ is equal to :
2.	In a triangle ABC, if $ \overrightarrow{BC} = 8$, $ \overrightarrow{CA} = 7$,		(1) $\frac{9}{\sqrt{2}}$ (2) $7\sqrt{2}$ (3) $2\sqrt{2}$ (4) $3\sqrt{2}$
	$\left \overrightarrow{AB}\right = 10$, then the projection of the vector \overrightarrow{AB}	6.	Official Ans. by NTA (1) Consider a hyperbola $H : x^2 - 2y^2 = 4$. Let the
	on \overrightarrow{AC} is equal to : (1) $\frac{25}{4}$ (2) $\frac{85}{14}$ (3) $\frac{127}{20}$ (4) $\frac{115}{16}$		tangent at a point $P(4,\sqrt{6})$ meet the x-axis at O and latus rectum at $R(x_1, y_1), x_1 > 0$. If F is
	4 14 20 10 Official Ans. by NTA (2)		a focus of H which is nearer to the point P, then the area of $\triangle OFR$ is equal to
3.	Let the system of linear equations		(1) $4\sqrt{6}$ (2) $\sqrt{6}-1$
	$4x + \lambda y + 2z = 0$ $2x - y + z = 0$		(3) $\frac{7}{\sqrt{6}} - 2$ (4) $4\sqrt{6} - 1$
	$ux + 2y + 3z = 0 \lambda u \in \mathbf{R}$		Official Ans. by NTA (3)
	$\mu x + 2y + 3z = 0, \lambda, \mu \in \mathbb{R}.$ has a non-trivial solution. Then which of the following is true ?	7.	If P and Q are two statements, then which of the following compound statement is a tautology ?
	(1) $\mu = 6, \lambda \in \mathbb{R}$ (2) $\lambda = 2, \mu \in \mathbb{R}$ (3) $\lambda = 3, \mu \in \mathbb{R}$ (4) $\mu = -6, \lambda \in \mathbb{R}$ Official Ans. by NTA (1)		(1) $((P \Rightarrow Q) \land \sim Q) \Rightarrow Q$ (2) $((P \Rightarrow Q) \land \sim Q) \Rightarrow \sim P$ (3) $((P \Rightarrow Q) \land \sim Q) \Rightarrow P$ (4) $((P \Rightarrow Q) \land \sim Q) \Rightarrow (P \land Q)$

(4) $((P \Rightarrow Q) \land \sim Q) \Rightarrow (P$ Official Ans. by NTA (2)

function in [0, 3] such that $\frac{1}{3} \le f(t) \le 1$ for all

$$t \in [0, 1]$$
 and $0 \le f(t) \le \frac{1}{2}$ for all $t \in (1, 3]$.

The largest possible interval in which g(3) lies is :

(1) $\left[-1, -\frac{1}{2}\right]$ (2) $\left[-\frac{3}{2}, -1\right]$ (3) $\left[\frac{1}{3}, 2\right]$ (4) [1, 3]

Official Ans. by NTA (3)

- 9. Let S_1 be the sum of first 2n terms of an arithmetic progression. Let S_2 be the sum of first 4n terms of the same arithmetic progression. If $(S_2 S_1)$ is 1000, then the sum of the first 6n terms of the arithmetic progression is equal to: (1) 1000 (2) 7000 (3) 5000 (4) 3000 Official Ans. by NTA (4)
- 10. Let a complex number be $w = 1 \sqrt{3}i$. Let another complex number z be such that |zw| = 1

and $\arg(z) - \arg(w) = \frac{\pi}{2}$. Then the area of the triangle with vertices origin, z and w is equal to :

(1) 4 (2)
$$\frac{1}{2}$$
 (3) $\frac{1}{4}$ (4) 2

Official Ans. by NTA (2)

11. Let in a series of 2n observations, half of them are equal to a and remaining half are equal to -a. Also by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively. Then the value of a² + b² is equal to :

(1) 425
(2) 650
(3) 250
(4) 925

Official Ans. by NTA (1)

12. Let $S_1 : x^2 + y^2 = 9$ and $S_2 : (x - 2)^2 + y^2 = 1$. Then the locus of center of a variable circle S which touches S_1 internally and S_2 externally always passes through the points :

(1)
$$\left(0, \pm \sqrt{3}\right)$$
 (2) $\left(\frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)$
(3) $\left(2, \pm \frac{3}{2}\right)$ (4) $\left(1, \pm 2\right)$
Official Ans. by NTA (3)

13. Let \vec{a} and \vec{b} be two non-zero vectors perpendicular to each other and $|\vec{a}| = |\vec{b}|$. If

 $\left|\vec{a} \times \vec{b}\right| = \left|\vec{a}\right|$, then the angle between the vectors

$$\left(\vec{a} + \vec{b} + \left(\vec{a} \times \vec{b}\right)\right)$$
 and \vec{a} is equal to :

(1)
$$\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 (2) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(3) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (4) $\sin^{-1}\left(\frac{1}{\sqrt{6}}\right)$

Official Ans. by NTA (2)

14.

Let in a Binomial distribution, consisting of 5 independent trials, probabilities of exactly 1 and 2 successes be 0.4096 and 0.2048 respectively. Then the probability of getting exactly 3 successes is equal to :

(1)
$$\frac{32}{625}$$
 (2) $\frac{80}{243}$ (3) $\frac{40}{243}$ (4) $\frac{128}{625}$

Official Ans. by NTA (1)

15. Let a tangent be drawn to the ellipse $\frac{x^2}{27} + y^2 = 1$

at
$$(3\sqrt{3}\cos\theta,\sin\theta)$$
 where $\theta \in \left(0,\frac{\pi}{2}\right)$. Then the

value of θ such that the sum of intercepts on axes made by this tangent is minimum is equal to :

(1)
$$\frac{\pi}{8}$$
 (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi}{3}$

Official Ans. by NTA (3)

Final JEE-Main Exam March, 2021/18-03-2021/Evening Session

- 16. Define a relation R over a class of n × n real matrices A and B as "ARB iff there exists a non-singular matrix P such that PAP⁻¹ = B". Then which of the following is true ?

 (1) R is symmetric, transitive but not reflexive,
 (2) R is reflexive, symmetric but not transitive
 - (3) R is an equivalence relation

(4) R is reflexive, transitive but not symmetric Official Ans. by NTA (3)

17. A pole stands vertically inside a triangular park ABC. Let the angle of elevation of the top of

the pole from each corner of the park be $\frac{\pi}{3}$.

If the radius of the circumcircle ot $\triangle ABC$ is 2, then the height of the pole is equal to :

(1)
$$\frac{2\sqrt{3}}{3}$$
 (2) $2\sqrt{3}$ (3) $\sqrt{3}$ (4) $\frac{1}{\sqrt{3}}$

Official Ans. by NTA (2)

- **18.** If $15\sin^4\alpha + 10\cos^4\alpha = 6$, for some $\alpha \in \mathbb{R}$, then the value of $27\sec^6\alpha + 8\csc^6\alpha$ is equal to : (1) 350 (2) 500 (3) 400 (4) 250 **Official Ans. by NTA (4)**
- 19. The area bounded by the curve $4y^2 = x^2 (4 - x)(x - 2)$ is equal to :

(1)
$$\frac{\pi}{8}$$
 (2) $\frac{3\pi}{8}$ (3) $\frac{3\pi}{2}$ (4) $\frac{\pi}{16}$
Official Ans. by NTA (3)

20. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined as

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin 2x}{2x} , & \text{if } x < 0\\ b , & \text{if } x = 0\\ \frac{\sqrt{x+bx^3} - \sqrt{x}}{bx^{5/2}} , & \text{if } x > 0 \end{cases}$$

If f is continuous at x = 0, then the value of a + b is equal to :

(1)
$$-\frac{5}{2}$$
 (2) -2 (3) -3 (4) $-\frac{3}{2}$

Official Ans. by NTA (4)

SECTION-B

1. If f(x) and g(x) are two polynomials such that the polynomial $P(x) = f(x^3) + xg(x^3)$ is divisible by $x^2 + x + 1$, then P(1) is equal to_____.

Official Ans. by NTA (0)

2. Let I be an identity matrix of order
$$2 \times 2$$
 and

$$P = \begin{bmatrix} 2 & -1 \\ 5 & -3 \end{bmatrix}$$
. Then the value of $n \in N$ for

which $P^n = 5I - 8P$ is equal to _____. Official Ans. by NTA (6)

3. If
$$\sum_{r=1}^{10} r! (r^3 + 6r^2 + 2r + 5) = \alpha(11!)$$
, then the

value of α is equal to _____.

Official Ans. by NTA (160)

4. The term independent of x in the expansion of

$$\left[\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right]^{10}, x \neq 1, \text{ is equal to}$$

Official Ans. by NTA (210)

5.

Let P(x) be a real polynomial of degree 3 which vanishes at x = -3. Let P(x) have local minima at x = 1, local maxima at x = -1 and

 $\int_{-1}^{1} P(x) dx = 18$, then the sum of all the

coefficients of the polynomial P(x) is equal to

Official Ans. by NTA (8)

6. Let the mirror image of the point (1, 3, a) with respect to the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) - b = 0$ be (-3, 5, 2). Then the value of |a + b| is equal to

Official Ans. by NTA (1)

Final JEE - Main Exam March, 2021/18-03-2021/Evening Session

7. Let $f : \mathbb{R} \to \mathbb{R}$ satisfy the equation f(x + y) = f(x).f(y) for all $x, y \in \mathbb{R}$ and $f(x) \neq 0$ for any $x \in \mathbb{R}$. If the function f is differentiable at x = 0 and f'(0) = 3, then

 $\lim_{h\to 0} \frac{1}{h} (f(h) - 1) \text{ is equal to } ____.$

Official Ans. by NTA (3)

8. Let ${}^{n}C_{r}$ denote the binomial coefficient of x^{r} in the expansion of $(1 + x)^{n}$.

If
$$\sum_{k=0}^{10} (2^2 + 3k)^n C_k = \alpha \cdot 3^{10} + \beta \cdot 2^{10}, \ \alpha, \ \beta \in \mathbb{R},$$

then $\alpha + \beta$ is equal to _____. Official Ans. by NTA (19) Allen Answer (Bonus) 9. Let P be a plane containing the line $\frac{x-1}{3} = \frac{y+6}{4} = \frac{z+5}{2}$ and parallel to the line $\frac{x-3}{4} = \frac{y-2}{-3} = \frac{z+5}{7}$. If the point $(1, -1, \alpha)$ lies

on the plane P, then the value of $|5\alpha|$ is equal to _____.

Official Ans. by NTA (38)

10. Let y = y(x) be the solution of the differential equation $xdy - ydx = \sqrt{(x^2 - y^2)} dx$, $x \ge 1$, with y(1) = 0. If the area bounded by the line x = 1, $x = e^{\pi}$, y = 0 and y = y(x) is $\alpha e^{2\pi} + \beta$, then the value of $10(\alpha + \beta)$ is equal to _____. Official Ans. by NTA (4)