SECTION-A

1. Fructose is an example of :-
 (1) Pyranose
 (2) Ketohexose
 (3) Aldohexose
 (4) Heptose
 Official Ans. by NTA (2)

2. The set of elements that differ in mutual relationship from those of the other sets is :
 (1) Li – Mg
 (2) B – Si
 (3) Be – Al
 (4) Li – Na
 Official Ans. by NTA (4)

3. The functional groups that are responsible for the ion-exchange property of cation and anion exchange resins, respectively, are :
 (1) –SO\(_3\)H and –NH\(_2\)
 (2) –SO\(_3\)H and –COOH
 (3) –NH\(_2\) and –COOH
 (4) –NH\(_2\) and –SO\(_3\)H
 Official Ans. by NTA (1)

4. Match List-I and List-II :
<table>
<thead>
<tr>
<th>List-I</th>
<th>List-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Haematite</td>
<td>(i) Al(_2)O(_3).xH(_2)O</td>
</tr>
<tr>
<td>(b) Bauxite</td>
<td>(ii) Fe(_2)O(_3)</td>
</tr>
<tr>
<td>(c) Magnetite</td>
<td>(iii) CuCO(_3).Cu(OH)(_2)</td>
</tr>
<tr>
<td>(d) Malachite</td>
<td>(iv) Fe(_3)O(_4)</td>
</tr>
</tbody>
</table>
 Choose the correct answer from the options given below :
 (1) (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv)
 (2) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
 (3) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
 (4) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
 Official Ans. by NTA (4)

5. The correct pair(s) of the ambident nucleophiles is (are) :
 (A) AgCN/KCN
 (B) RCOOAg/RCOOK
 (C) AgNO\(_3\)/KNO\(_2\)
 (D) AgI/KI
 (1) (B) and (C) only
 (2) (A) only
 (3) (A) and (C) only
 (4) (B) only
 Official Ans. by NTA (3)

6. The set that represents the pair of neutral oxides of nitrogen is :
 (1) NO and N\(_2\)O
 (2) N\(_2\)O and N\(_2\)O\(_3\)
 (3) N\(_2\)O and NO\(_2\)
 (4) NO and NO\(_2\)
 Official Ans. by NTA (1)

7. Match List-I with List-II :
<table>
<thead>
<tr>
<th>List-I</th>
<th>List-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) [Co(NH(_3))(_6)]</td>
<td>(i) Linkage isomerism</td>
</tr>
<tr>
<td>(b) [Co(NH(_3))(_3).(NO(_2))(_3)]</td>
<td>(ii) Solvate isomerism</td>
</tr>
<tr>
<td>(c) [Cr(H(_2)O)(_6)]Cl(_3)</td>
<td>(iii) Co-ordination isomerism</td>
</tr>
<tr>
<td>(d) cis-[CrCl(_2)(ox)(_2)](^{3-})</td>
<td>(iv) Optical isomerism</td>
</tr>
</tbody>
</table>
 Choose the correct answer from the options given below :
 (1) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
 (2) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
 (3) (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
 (4) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
 Official Ans. by NTA (1)

8. Primary, secondary and tertiary amines can be separated using :-
 (1) Para-Toluene sulphonyl chloride
 (2) Chloroform and KOH
 (3) Benzene sulphonic acid
 (4) Acetyl amide
 Official Ans. by NTA (1)

9. The common positive oxidation states for an element with atomic number 24, are :
 (1) +2 to +6
 (2) +1 and +3 to +6
 (3) +1 and +3
 (4) +1 to +6
 Official Ans. by NTA (1)

10. Match List-I with List-II :
List-I	List-II
(a) Sucralose	(i) Synthetic detergent
(b) Glyceryl ester	(ii) Artificial sweetener of stearic acid
(c) Sodium	(iii) Antiseptic benzoate
(d) Bithionol	(iv) Food preservative
 Choose the correct match :
 (1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
 (2) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
 (3) (a)-(ii), (b)-(i), (c)-(iv), (d)-(i)
 (4) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)
 Official Ans. by NTA (2)
11. Given below are two statements:

Statement-I: 2-methylbutane on oxidation with \(\text{KMnO}_4 \) gives 2-methylbutan-2-ol.

Statement-II: \(n \)-alkanes can be easily oxidised to corresponding alcohols with \(\text{KMnO}_4 \).

Choose the correct option:
(1) Both statement I and statement II are correct
(2) Both statement I and statement II are incorrect
(3) Statement I is correct but Statement II is incorrect
(4) Statement I is incorrect but Statement II is correct

Official Ans. by NTA (3)

12. Nitrogen can be estimated by Kjeldahl’s method for which of the following compound?

(1) \(\text{N}_2\text{NCl}^+ \)
(2) \(\text{Cl}_2\text{NH}_2 \)
(3) \(\text{N}_3^- \)
(4) \(\text{NO}_2^- \)

Official Ans. by NTA (2)

13. Amongst the following, the linear species is:

(1) \(\text{NO}_2 \)
(2) \(\text{Cl}_2\text{O} \)
(3) \(\text{O}_3 \)
(4) \(\text{N}_3^- \)

Official Ans. by NTA (4)

14.

\[
\begin{align*}
\text{C}_{12}\text{H}_{22}\text{O}_{11}+\text{H}_2\text{O} & \xrightarrow{\text{Enzyme A}} \text{C}_6\text{H}_{12}\text{O}_6^++\text{C}_6\text{H}_{12}\text{O}_6 \\
\text{C}_6\text{H}_{12}\text{O}_6 & \xrightarrow{\text{Enzyme B}} 2\text{C}_2\text{H}_5\text{OH}+2\text{CO}_2
\end{align*}
\]

In the above reactions, the enzyme A and enzyme B respectively are:

(1) Amylase and Invertase
(2) Invertase and Amylase
(3) Invertase and Zymase
(4) Zymase and Invertase

Official Ans. by NTA (3)

15. One of the by-products formed during the recovery of \(\text{NH}_3 \) from Solvay process is:

(1) \(\text{Ca(OH)}_2 \)
(2) \(\text{NaHCO}_3 \)
(3) \(\text{CaCl}_2 \)
(4) \(\text{NH}_4\text{Cl} \)

Official Ans. by NTA (3)

16. \(\text{C}_3\text{H}_7\text{N}_2\text{OCl}+\text{C}_2\text{H}_5\text{OH} \xrightarrow{\text{Enzyme A}} \)

In the above reaction, the structural formula of (A), "X" and "Y" respectively are:

(1) \(\text{N}_2\text{Cl}^+ \), \(\text{CH}_3\text{C}^-\text{H} \), \(\text{HCl} \)
(2) \(\text{N}_2\text{OCH}_3 \), \(\text{H}_2\text{O} \), \(\text{HCl} \)
(3) \(\text{N}_2\text{OCH}_3 \), \(\text{CH}_3\text{C}^-\text{H} \), \(\text{H}_2\text{O} \)
(4) \(\text{N}_2\text{Cl}^+ \), \(\text{O}^- \), \(\text{H}_2\text{O} \)

Official Ans. by NTA (1)

17. For the coagulation of a negative sol, the species below, that has the highest flocculating power is:

(1) \(\text{SO}_4^{2-} \)
(2) \(\text{Ba}^{2+} \)
(3) \(\text{Na}^+ \)
(4) \(\text{PO}_4^{3-} \)

Official Ans. by NTA (2)

18. Which of the following statement(s) is (are) incorrect reason for eutrophication?

(A) excess usage of fertilisers
(B) excess usage of detergents
(C) dense plant population in water bodies
(D) lack of nutrients in water bodies that prevent plant growth

Choose the most appropriate answer from the options given below:

(1) (A) only
(2) (C) only
(3) (B) and (D) only
(4) (D) only

Official Ans. by NTA (4)
19. Choose the correct statement regarding the formation of carbocations A and B given :

CH₂─CH₂=CH₂+HBr

CH₂─CH₂─CH₂+Br⁻

“A”

CH₂─CH₂─CH₃+Br⁻

“B”

(1) Carbocation B is more stable and formed relatively at faster rate
(2) Carbocation A is more stable and formed relatively at slow rate
(3) Carbocation B is more stable and formed relatively at slow rate
(4) Carbocation A is more stable and formed relatively at faster rate

Official Ans. by NTA (1)

20. During which of the following processes, does entropy decrease ?

(A) Freezing of water to ice at 0°C
(B) Freezing of water to ice at –10°C
(C) N₂(g) + 3H₂(g) → 2NH₃(g)
(D) Adsorption of CO(g) and lead surface
(E) Dissolution of NaCl in water

Official Ans. by NTA (1)
(1) (A), (B), (C) and (D) only
(2) (B) and (C) only
(3) (A) and (E) only
(4) (A), (C) and (E) only

SECTION-B

1. A KCl solution of conductivity 0.14 S m⁻¹ shows a resistance of 4.19 Ω in a conductivity cell. If the same cell is filled with an HCl solution, the resistance drops to 1.03 Ω. The conductivity of the HCl solution is _____ × 10⁻² S m⁻¹. (Round off to the Nearest Integer).

Official Ans. by NTA (57)

2. On complete reaction of FeCl₃ with oxalic acid in aqueous solution containing KOH, resulted in the formation of product A. The secondary valency of Fe in the product A is _____.

(Round off to the Nearest Integer).

Official Ans. by NTA (6)

3. The reaction 2A + B₂ → 2AB is an elementary reaction.

For a certain quantity of reactants, if the volume of the reaction vessel is reduced by a factor of 3, the rate of the reaction increases by a factor of _____. (Round off to the Nearest Integer).

Official Ans. by NTA (27)

4. The total number of C─C sigma bond/s in mesityl oxide (C₆H₁₀O) is _____. (Round off to the Nearest Integer).

Official Ans. by NTA (5)

5. A 1 molal K₄Fe(CN)₆ solution has a degree of dissociation of 0.4. Its boiling point is equal to that of another solution which contains 18.1 weight percent of a non electrolytic solute A. The molar mass of A is ____ u. (Round off to the Nearest Integer).

[Density of water = 1.0 g cm⁻³]

Official Ans. by NTA (85)

6. In the ground state of atomic Fe(Z = 26), the spin-only magnetic moment is _____ × 10⁻¹ BM. (Round off to the Nearest Integer).

[Given : \(\sqrt{3} = 1.73\), \(\sqrt{2} = 1.41\)]

Official Ans. by NTA (49)

7. The number of chlorine atoms in 20 mL of chlorine gas at STP is ____ 10²¹. (Round off to the Nearest Integer).

[Assume chlorine is an ideal gas at STP

\(R = 0.083 \text{ L bar mol}^{-1} \text{ K}^{-1}, N_A = 6.023 \times 10^{23}\)]

Official Ans. by NTA (1)

8. KBr is doped with 10⁻⁵ mole percent of SrBr₂. The number of cationic vacancies in 1 g of KBr crystal is ____ 10¹⁴. (Round off to the Nearest Integer).

[Atomic Mass : K : 39.1 u, Br : 79.9 u,

\(N_A = 6.023 \times 10^{23}\)]

Official Ans. by NTA (5)
9. Consider the reaction \(\text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g) \).

The temperature at which \(K_C = 20.4 \) and \(K_P = 600.1 \), is____K. (Round off to the Nearest Integer).

[Assume all gases are ideal and \(R = 0.0831 \text{ L } \text{bar } \text{K}^{-1} \text{ mol}^{-1} \)]

Official Ans. by NTA (354)

10. Consider the above reaction. The percentage yield of amide product is _____. (Round off to the Nearest Integer).

(Given: Atomic mass: \(\text{C} : 12.0 \text{ u}, \text{H} : 1.0 \text{ u}, \text{N} : 14.0 \text{ u}, \text{O} : 16.0 \text{ u}, \text{Cl} : 35.5 \text{ u} \))

Official Ans. by NTA (77)