A-1 EN
natitio omecuas
CAREER INSTITUTE
FINAL JEE-MAIN EXAMINATION - MARCH, 2021
(Held On Wednesday 17 ${ }^{\text {th }}$ March, 2021) TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1. Let $f: R \rightarrow R$ be defined as $f(x)=e^{-x} \sin x$. If $\mathrm{F}:[0,1] \rightarrow \mathrm{R}$ is a differentiable function such that $F(x)=\int_{0}^{x} f(t) d t$, then the value of $\int_{0}^{1}\left(F^{\prime}(x)+f(x)\right) e^{x} d x$ lies in the interval
(1) $\left[\frac{327}{360}, \frac{329}{360}\right]$
(2) $\left[\frac{330}{360}, \frac{331}{360}\right]$
(3) $\left[\frac{331}{360}, \frac{334}{360}\right]$
(4) $\left[\frac{335}{360}, \frac{336}{360}\right]$

Official Ans. by NTA (2)
2. If the integral $\int_{0}^{10} \frac{[\sin 2 \pi x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta \mathrm{e}^{-\frac{1}{2}}+\gamma$, where α, β, γ are integers and $[\mathrm{x}]$ denotes the greatest integer less than or equal to x, then the value of $\alpha+\beta+\gamma$ is equal to :
(1) 0
(2) 20
(3) 25
(4) 10

Official Ans. by NTA (1)
3. Let $y=y(x)$ be the solution of the differential equation
$\cos x(3 \sin x+\cos x+3) d y=$
$(1+y \sin x(3 \sin x+\cos x+3)) d x$,
$0 \leq \mathrm{x} \leq \frac{\pi}{2}, \mathrm{y}(0)=0$. Then , $\mathrm{y}\left(\frac{\pi}{3}\right)$ is equal to:
(1) $2 \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}+9}{6}\right)$
(2) $2 \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}+10}{11}\right)$
(3) $2 \log _{\mathrm{e}}\left(\frac{\sqrt{3}+7}{2}\right)$
(4) $2 \log _{e}\left(\frac{3 \sqrt{3}-8}{4}\right)$

Official Ans. by NTA (2)
4. The value of $\sum_{\mathrm{r}=0}^{6}\left({ }^{6} \mathrm{C}_{\mathrm{r}} \cdot{ }^{6} \mathrm{C}_{6-\mathrm{r}}\right)$ is equal to :
(1) 1124
(2) 1324
(3) 1024
(4) 924

Official Ans. by NTA (4)

IEST PAPER WITH ANSWER

5. The value of $\lim _{\mathrm{n} \rightarrow \infty} \frac{[\mathrm{r}]+[2 \mathrm{r}]+\ldots .+[\mathrm{nr}]}{\mathrm{n}^{2}}$, where r is non-zero real number and [r] denotes the greatest integer less than or equal to r, is equal to :
(1) $\frac{r}{2}$
(2) r
(3) $2 r$
(4) 0

Official Ans. by NTA (1)
6. The number of solutions of the equation $\sin ^{-1}\left[x^{2}+\frac{1}{3}\right]+\cos ^{-1}\left[x^{2}-\frac{2}{3}\right]=x^{2}$,
for $x \in[-1,1]$, and $[x]$ denotes the greatest integer less than or equal to x, is :
(1) 2
(2) 0
(3) 4
(4) Infinite

Official Ans. by NTA (2)
7. Let a computer program generate only the digits 0 and 1 to form a string of binary numbers with probability of occurrence of 0 at even places be $\frac{1}{2}$ and probability of occurrence of 0 at the odd place be $\frac{1}{3}$. Then the probability that ' 10 ' is followed by ' 01 ' is equal to :
(1) $\frac{1}{18}$
(2) $\frac{1}{3}$
(3) $\frac{1}{6}$
(4) $\frac{1}{9}$

Official Ans. by NTA (4)
8. The number of solutions of the equation $x+2 \tan x=\frac{\pi}{2}$ in the interval $[0,2 \pi]$ is :
(1) 3
(2) 4
(3) 2
(4) 5

Official Ans. by NTA (1)
9. Let S_{1}, S_{2} and S_{3} be three sets defined as
$S_{1}=\{z \in \mathbb{C}:|z-1| \leq \sqrt{2}\}$
$S_{2}=\{z \in \mathbb{C}: \operatorname{Re}((1-i) z) \geq 1\}$
$\mathrm{S}_{3}=\{\mathrm{z} \in \mathbb{C}: \operatorname{Im}(\mathrm{z}) \leq 1\}$
Then the set $S_{1} \cap S_{2} \cap S_{3}$
(1) is a singleton
(2) has exactly two elements
(3) has infinitely many elements
(4) has exactly three elements

Official Ans. by NTA (3)
10. If the curve $y=y(x)$ is the solution of the differential equation
$2\left(x^{2}+x^{5 / 4}\right) d y-y\left(x+x^{1 / 4}\right) d x=2 x^{9 / 4} d x, x>0$ which passes through the point $\left(1,1-\frac{4}{3} \log _{e} 2\right)$, then the value of $y(16)$ is equal to :
(1) $4\left(\frac{31}{3}+\frac{8}{3} \log _{\mathrm{e}} 3\right)$
(2) $\left(\frac{31}{3}+\frac{8}{3} \log _{\mathrm{e}} 3\right)$
(3) $4\left(\frac{31}{3}-\frac{8}{3} \log _{\mathrm{e}} 3\right)$
(4) $\left(\frac{31}{3}-\frac{8}{3} \log _{\mathrm{e}} 3\right)$

Official Ans. by NTA (3)
11. If the sides $A B, B C$ and $C A$ of a triangle $A B C$ have 3,5 and 6 interior points respectively, then the total number of triangles that can be constructed using these points as vertices, is equal to :
(1) 364
(2) 240
(3) 333
(4) 360

Official Ans. by NTA (3)
12. If x, y, z are in arithmetic progression with common difference $d, x \neq 3 d$, and the determinant of the matrix $\left[\begin{array}{ccc}3 & 4 \sqrt{2} & x \\ 4 & 5 \sqrt{2} & y \\ 5 & k & z\end{array}\right]$ is zero, then the value of k^{2} is
(1) 72
(2) 12
(3) 36
(4) 6

Official Ans. by NTA (1)
13. Let O be the origin. Let $\overrightarrow{\mathrm{OP}}=x \hat{i}+y \hat{j}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{OQ}}=-\hat{\mathrm{i}}+2 \hat{j}+3 x \hat{\mathrm{k}}, x, y \in R, x>0$, be such that $|\overrightarrow{\mathrm{PQ}}|=\sqrt{20}$ and the vector $\overrightarrow{\mathrm{OP}}$ is perpendicular to $\overrightarrow{\mathrm{OQ}}$. If $\overrightarrow{\mathrm{OR}}=3 \hat{\mathrm{i}}+z \hat{\mathrm{j}}-7 \hat{\mathrm{k}}, z \in \mathrm{R}$, is coplanar with $\overrightarrow{\mathrm{OP}}$ and $\overrightarrow{\mathrm{OQ}}$, then the value of $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ is equal to
(1) 7
(2) 9
(3) 2
(4) 1

Official Ans. by NTA (2)
14. Two tangents are drawn from a point P to the circle $x^{2}+y^{2}-2 x-4 y+4=0$, such that the angle between these tangents is $\tan ^{-1}\left(\frac{12}{5}\right)$, where $\tan ^{-1}\left(\frac{12}{5}\right) \in(0, \pi)$. If the centre of the circle is denoted by C and these tangents touch the circle at points A and B, then the ratio of the areas of $\triangle \mathrm{PAB}$ and $\triangle \mathrm{CAB}$ is :
(1) $11: 4$
(2) $9: 4$
(3) $3: 1$
(4) $2: 1$

Official Ans. by NTA (2)
15. Consider the function $f: R \rightarrow R$ defined by $f(x)=\left\{\begin{array}{c}\left(2-\sin \left(\frac{1}{x}\right)\right)|x|, x \neq 0 \\ 0 \quad, \\ 0=0\end{array}\right.$. Then f is :
(1) monotonic on $(-\infty, 0) \cup(0, \infty)$
(2) not monotonic on $(-\infty, 0)$ and $(0, \infty)$
(3) monotonic on ($0, \infty$) only
(4) monotonic on $(-\infty, 0)$ only

Official Ans. by NTA (2)
16. Let L be a tangent line to the parabola $y^{2}=4 x-20$ at $(6,2)$. If L is also a tangent to the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{b}=1$, then the value of b is equal to :
(1) 11
(2) 14
(3) 16
(4) 20

Official Ans. by NTA (2)
17. The value of the limit $\lim _{\theta \rightarrow 0} \frac{\tan \left(\pi \cos ^{2} \theta\right)}{\sin \left(2 \pi \sin ^{2} \theta\right)}$ is equal to :
(1) $-\frac{1}{2}$
(2) $-\frac{1}{4}$
(3) 0
(4) $\frac{1}{4}$

Official Ans. by NTA (1)
18. Let the tangent to the circle $x^{2}+y^{2}=25$ at the point $R(3,4)$ meet x-axis and y-axis at point P and Q, respectively. If r is the radius of the circle passing through the origin O and having centre at the incentre of the triangle OPQ, then r^{2} is equal to
(1) $\frac{529}{64}$
(2) $\frac{125}{72}$
(3) $\frac{625}{72}$
(4) $\frac{585}{66}$

Official Ans. by NTA (3)
19. If the Boolean expression $(p \wedge q) \circledast(p \otimes q)$ is a tautology, then \circledast and \otimes are respectively given by
(1) \rightarrow, \rightarrow
(2) \wedge, \vee
(3) \vee, \rightarrow
(4) \wedge, \rightarrow

Official Ans. by NTA (1)
20. If the equation of plane passing through the mirror image of a point $(2,3,1)$ with respect to line $\frac{x+1}{2}=\frac{y-3}{1}=\frac{z+2}{-1}$ and containing the line $\frac{x-2}{3}=\frac{1-y}{2}=\frac{z+1}{1}$ is $\alpha x+\beta y+\gamma z=24$, then $\alpha+\beta+\gamma$ is equal to :
(1) 20
(2) 19
(3) 18
(4) 21

Official Ans. by NTA (2)

SECTION-B

1. If $1, \log _{10}\left(4^{x}-2\right)$ and $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ are in arithmetic progression for a real number x, then the value of the determinant $\left|\begin{array}{ccc}2\left(\mathrm{x}-\frac{1}{2}\right) & \mathrm{x}-1 & \mathrm{x}^{2} \\ 1 & 0 & \mathrm{x} \\ \mathrm{x} & 1 & 0\end{array}\right|$ is equal to :
Official Ans. by NTA (2)
2. Let $f:[-1,1] \rightarrow R$ be defined as $f(x)=a x^{2}+b x+c$ for all $x \in[-1,1]$, where $a, b, c \in R$ such that $f(-1)=2, f^{\prime}(-1)=1$ and for $x \in(-1,1)$ the maximum value of $f^{\prime \prime}(x)$ is $\frac{1}{2}$. If $f(x) \leq \alpha$, $x \in[-1,1]$, then the least value of α is equal to \qquad _.
Official Ans. by NTA (5)
3. Let $\mathrm{f}:[-3,1] \rightarrow \mathrm{R}$ be given as
$f(x)= \begin{cases}\min \left\{(x+6), x^{2}\right\}, & -3 \leq x \leq 0 \\ \max \left\{\sqrt{x}, x^{2}\right\}, & 0 \leq x \leq 1 .\end{cases}$
If the area bounded by $y=f(x)$ and x-axis is A , then the value of 6 A is equal to \qquad _.
Official Ans. by NTA (41)
4. Let $\tan \alpha, \tan \beta$ and $\tan \gamma ; \alpha, \beta, \gamma \neq \frac{(2 \mathrm{n}-1) \pi}{2}$, $\mathrm{n} \in \mathrm{N}$ be the slopes of three line segments OA, OB and OC , respectively, where O is origin.If circumcentre of $\triangle \mathrm{ABC}$ coincides with origin and its orthocentre lies on y-axis, then the value
of $\left(\frac{\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma}{\cos \alpha \cos \beta \cos \gamma}\right)^{2}$ is equal to :

Official Ans. by NTA (144)

5. Consider a set of $3 n$ numbers having variance 4. In this set, the mean of first 2 n numbers is 6 and the mean of the remaining n numbers is 3. A new set is constructed by adding 1 into each of first 2 n numbers, and subtracting 1 from each of the remaining n numbers. If the variance of the new set is k, then $9 k$ is equal to \qquad _.

Official Ans. by NTA (68)

6. Let the coefficients of third, fourth and fifth terms in the expansion of $\left(x+\frac{a}{x^{2}}\right)^{n}, x \neq 0$, be in the ratio $12: 8: 3$. Then the term independent of x in the expansion, is equal to \qquad .
Official Ans. by NTA (4)
7. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$ such that
$\mathrm{AB}=\mathrm{B}$ and $\mathrm{a}+\mathrm{d}=2021$, then the value of $a d-b c$ is equal to \qquad _.
Official Ans. by NTA (2020)
8. Let \vec{x} be a vector in the plane containing vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$. If the vector \vec{x} is perpendicular to $(3 \hat{i}+2 \hat{j}-\hat{k})$ and its projection on $\overrightarrow{\mathrm{a}}$ is $\frac{17 \sqrt{6}}{2}$, then the value of $|\overrightarrow{\mathrm{x}}|^{2}$ is equal to \qquad .
Official Ans. by NTA (486)
9. Let $I_{n}=\int_{1}^{e} x^{19}(\log |x|)^{n} d x$, where $n \in N$. If (20) $\mathrm{I}_{10}=\alpha \mathrm{I}_{9}+\beta \mathrm{I}_{8}$, for natural numbers α and β, then $\alpha-\beta$ equal to \qquad .
Official Ans. by NTA (1)
10. Let P be an arbitrary point having sum of the squares of the distance from the planes $\mathrm{x}+\mathrm{y}+\mathrm{z}=0, l \mathrm{x}-\mathrm{nz}=0$ and $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=0$, equal to 9 . If the locus of the point P is $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=9$, then the value of $l-\mathrm{n}$ is equal to \qquad _.

Official Ans. by NTA (0)

