FINAL JEE-MAIN EXAMINATION – MARCH, 2021

(Held On Tuesday 16th March, 2021) TIME : 9 : 00 AM to 12 : 00 NOON

MATHEMATICSTEST PAPER WITH ANSWER**SECTION-ASECTION-A1.** The number of elements in the set
(x
$$\in \mathbb{R} : (x|x| - 3)$$
) (x $+4|=6|$) is equal to
(1) 3 (2) 2 (3) 4 (4) 1
Official Ans. by NTA (2)**6.** Let $A = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix}$, $i = \sqrt{-1}$. Then, the system of
linear equations $A^{i} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ -6 \end{bmatrix}$ has :
(1) A unique solution
(2) Infinitely many solutions
(3) No solution
(3) No solution
(4) Exactly two solutions
(3) No solution
(1) $\frac{1}{2}$ (2) 1
(3) $\frac{1}{\sqrt{2}}$ (4) $2\sqrt{2}$ Official Ans. by NTA (1)**3.** If for a > 0, the feet of perpendiculars from the
points $A(a, -2a, 3)$ and $B(0, 4, 5)$ on the plane
 $k + my + nz = 0$ are points $C(0, -a, -1)$ and D
respectively, then the length of line segment CD
is equal to :
(1) $\sqrt{31}$ (2) $\sqrt{41}$
(3) $\sqrt{55}$ (4) $\sqrt{66}$ **Official Ans. by NTA (4)4.** Consider three observations a, b and c such that
 $b = a + c$. If the standard deviation of $a + 2$,
 $b + 2, c + 2$ is d , then which of the following
is true ?
(1) $b^{2} = 3(a^{2} + c^{2} + 40^{2})$
(4) $b^{2} = 3(a^{2} + c^{2} + 40^{2})$
(4) $b^{2} = 3(a^{2} + c^{2} - 9d^{2})$ **Official Ans. by NTA (2)5.** If for $x \in \left(0, \frac{\pi}{2}\right)$, $\log_{10} \sin x + \log_{10} \cos x = -1$
and $\log_{10}(\sin x + \cos x) = \frac{1}{2}(\log_{10} n - 1), n > 0,$
then the value of n is equal to :
(1) 2 (2) (2) (3) 9 (4) 16
Official Ans. by NTA (2)5. If for $x \in \left(0, \frac{\pi}{2}\right)$, $\log_{10} \sin x + \log_{10} \cos x = -1$
and $\log_{10}(\sin x + \cos x) = \frac{1}{2}(\log_{10} n - 1), n > 0,$
then the value of n is equal to :
(1) 2 (2) (2) (3) 9 (4) 16
Official Ans. by NTA (2)7. If the three of no is a call to :
(1) 3 (2) $\sqrt{41}$
(3) $\sqrt{55}$ (4) $\sqrt{22}$
Official Ans. by NTA (2)7. If for $x \in \left($

1

Final JEE - Main Exam March, 2021/16-03-2021/Morning Session

10. Which of the following Boolean expression is a tautology ?

(1) (p ∧ q) ∨ (p ∨ q)
(2) (p ∧ q) ∨ (p → q)
(3) (p ∧ q) ∧ (p → q)
(4) (p ∧ q) → (p → q)

11. Let a complex number z, |z| ≠ 1,
satisfy log 1/((|z|+11)/2) ≤ 2. Then, the largest

value of |z| is equal to _____ .

(1) 8 (2) 7 (3) 6 (4) 5 Official Ans. by NTA (2)

12. If n is the number of irrational terms in the expansion of $(3^{1/4} + 5^{1/8})^{60}$, then (n - 1) is divisible by :

(1) 26 (2) 30 (3) 8 (4) 7 Official Ans. by NTA (1)

13. Let P be a plane lx + my + nz = 0 containing

the line, $\frac{1-x}{1} = \frac{y+4}{2} = \frac{z+2}{3}$. If plane P divides the line segment AB joining points A(-3, -6, 1) and B(2, 4, -3) in ratio k : 1 then the value of k is equal to : (1) 1.5 (2) 3 (3) 2 (4) 4

Official Ans. by NTA (3)

14. The range of $a \in \mathbb{R}$ for which the function

$$f(x) = (4a-3)(x + \log_e 5) + 2(a-7)\cot\left(\frac{x}{2}\right)\sin^2\left(\frac{x}{2}\right),$$

 $x \neq 2n\pi, n \in \mathbb{N}$, has critical points, is :

(1) (-3, 1) (3) $[1, \infty)$ (2) $\left[-\frac{4}{3}, 2\right]$ (4) $(-\infty, -1]$

- **15.** A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is :
 - (1) $\frac{3}{4}$ (2) $\frac{52}{867}$ (3) $\frac{39}{50}$ (4) $\frac{22}{425}$

Official Ans. by NTA (3)

16. Let [x] denote greatest integer less than or equal

to x. If for
$$n \in \mathbb{N}$$
, $(1 - x + x^3)^n = \sum_{j=0}^{3n} a_j x^j$, then

$$\sum_{j=0}^{\lfloor \frac{3n}{2} \rfloor} a_{2j} + 4 \sum_{j=0}^{\lfloor \frac{3n-1}{2} \rfloor} a_{2j} + 1 \text{ is equal to}$$

(1) 2 (2)
$$2^{n-1}$$

Official Ans. by NTA (3)

17. If y = y(x) is the solution of the differential

equation,
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
, $y\left(\frac{\pi}{3}\right) = 0$, then

the maximum value of the function y(x) over \mathbb{R} is equal to :

(1) 8 (2)
$$\frac{1}{2}$$
 (3) $-\frac{15}{4}$ (4) $\frac{1}{8}$

Official Ans. by NTA (4)

18. The locus of the midpoints of the chord of the circle, $x^2 + y^2 = 25$ which is tangent to the hyperbola, $\frac{x^2}{9} - \frac{y^2}{16} = 1$ is :

(1)
$$(x^2 + y^2)^2 - 16x^2 + 9y^2 = 0$$

(2) $(x^2 + y^2)^2 - 9x^2 + 144y^2 = 0$
(3) $(x^2 + y^2)^2 - 9x^2 - 16y^2 = 0$

(4)
$$(x^2 + y^2)^2 - 9x^2 + 16y^2 = 0$$

Official Ans. by NTA (4)

19. The number of roots of the equation,

$$(81)^{\sin^2 x} + (81)^{\cos^2 x} = 30$$

in the interval $[0, \pi]$ is equal to :

Official Ans. by NTA (2)

20. Let
$$S_k = \sum_{r=1}^k \tan^{-1} \left(\frac{6^r}{2^{2r+1} + 3^{2r+1}} \right)$$
. Then $\lim_{k \to \infty} S_k$ is

equal to :

(1)
$$\tan^{-1}\left(\frac{3}{2}\right)$$
 (2) $\frac{\pi}{2}$

(3) $\cot^{-1}\left(\frac{3}{2}\right)$ (4) $\tan^{-1}(3)$

Official Ans. by NTA (3)

Final JEE - Main Exam March, 2021/16-03-2021/Morning Session

SECTION-B

Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to _____.

Official Ans. by NTA (3)

2. Let $f: (0, 2) \to \mathbb{R}$ be defined as

 $f(\mathbf{x}) = \log_2\left(1 + \tan\left(\frac{\pi \mathbf{x}}{4}\right)\right).$

Then, $\lim_{n \to \infty} \frac{2}{n} \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \dots + f(1) \right) \text{ is equal}$ to ______ .

Official Ans. by NTA (1)

3. Let ABCD be a square of side of unit length. Let a circle C_1 centered at A with unit radius is drawn. Another circle C_2 which touches C_1 and the lines AD and AB are tangent to it, is also drawn. Let a tangent line from the point C to the circle C_2 meet the side AB at E. If the length of EB is $\alpha + \sqrt{3}\beta$, where α , β are integers, then $\alpha + \beta$ is equal to_____.

Official Ans. by NTA (1)

4. If $\lim_{x \to 0} \frac{ae^x - b\cos x + ce^{-x}}{x\sin x} = 2$, then a + b + c is

equal to _____.

Official Ans. by NTA (4)

5. The total number of 3×3 matrices A having enteries from the set (0, 1, 2, 3) such that the sum of all the diagonal entries of AA^T is 9, is equal to _____.

Official Ans. by NTA (766)

6. Let

$$P = \begin{bmatrix} -30 & 20 & 56 \\ 90 & 140 & 112 \\ 120 & 60 & 14 \end{bmatrix}$$
 and
$$A = \begin{bmatrix} 2 & 7 & \omega^{2} \\ -1 & -\omega & 1 \\ 0 & -\omega & -\omega + 1 \end{bmatrix}$$

where $\omega = \frac{-1 + i\sqrt{3}}{2}$, and I_3 be the identity

matrix of order 3. If the determinant of the matrix $(P^{-1}AP - I_3)^2$ is $\alpha\omega^2$, then the value of α is equal to ______.

Official Ans. by NTA (36)

7. If the normal to the curve

 $y(x) = \int_{0}^{\infty} (2t^2 - 15t + 10) dt$ at a point (a,b) is

parallel to the line x + 3y = -5, a > 1, then the value of |a + 6b| is equal to ______.

Official Ans. by NTA (406)

8. Let the curve y = y(x) be the solution of the

differential equation, $\frac{dy}{dx} = 2(x+1)$. If the numerical value of area bounded by the curve y = y(x) and x-axis is $\frac{4\sqrt{8}}{3}$, then the value of y(1) is equal to ______. Official Ans. by NTA (2)

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x) + f(x + 1) = 2, for all $x \in \mathbb{R}$. If $I_1 = \int_{0}^{8} f(x) dx$ and $I_2 = \int_{1}^{3} f(x) dx$, then the value

of $I_1 + 2I_2$ is equal to _____.

Official Ans. by NTA (16)

9.

10. Let z and w be two complex numbers such that

$$w = z\overline{z} - 2z + 2$$
, $\left|\frac{z+i}{z-3i}\right| = 1$ and $Re(w)$ has

minimum value. Then, the minimum value of $n \in \mathbb{N}$ for which w^n is real, is equal to _____.

Official Ans. by NTA (4)