AM-FIT

CAREER INSTITUTE
KOTA (RAUASTHAN

FINAL JEE-MAIN EXAMINATION - MARCH, 2021

(Held On Tuesday 16 ${ }^{\text {th }}$ March, 2021) TIME: 9:00 AM to 12:00 NOON

MATHEMATIGS

SECTION-A

1. The number of elements in the set $\{x \in \mathbb{R}:(|x|-3)|x+4|=6\}$ is equal to
(1) 3
(2) 2
(3) 4
(4) 1

Official Ans. by NTA (2)
2. Let a vector $\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}$ be obtained by rotating the vector $\sqrt{3} \hat{i}+\hat{j}$ by an angle 45° about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices $(\alpha, \beta),(0, \beta)$ and $(0,0)$ is equal to
(1) $\frac{1}{2}$
(2) 1
(3) $\frac{1}{\sqrt{2}}$
(4) $2 \sqrt{2}$

Official Ans. by NTA (1)
3. If for a >0, the feet of perpendiculars from the points $\mathrm{A}(\mathrm{a},-2 \mathrm{a}, 3)$ and $\mathrm{B}(0,4,5)$ on the plane $l \mathrm{x}+\mathrm{my}+\mathrm{nz}=0$ are points $\mathrm{C}(0,-\mathrm{a},-1)$ and D respectively, then the length of line segment $C D$ is equal to :
(1) $\sqrt{31}$
(2) $\sqrt{41}$
(3) $\sqrt{55}$
(4) $\sqrt{66}$

Official Ans. by NTA (4)
4. Consider three observations a, b and c such that $\mathrm{b}=\mathrm{a}+\mathrm{c}$. If the standard deviation of $\mathrm{a}+2$, $\mathrm{b}+2, \mathrm{c}+2$ is d , then which of the following is true?
(1) $b^{2}=3\left(a^{2}+c^{2}\right)+9 d^{2}$
(2) $b^{2}=a^{2}+c^{2}+3 d^{2}$
(3) $b^{2}=3\left(a^{2}+c^{2}+d^{2}\right)$
(4) $b^{2}=3\left(a^{2}+c^{2}\right)-9 d^{2}$

Official Ans. by NTA (4)
5. If for $\mathrm{x} \in\left(0, \frac{\pi}{2}\right), \log _{10} \sin \mathrm{x}+\log _{10} \cos \mathrm{x}=-1$ and $\log _{10}(\sin x+\cos x)=\frac{1}{2}\left(\log _{10} n-1\right), n>0$, then the value of n is equal to :
(1) 20
(2) 12
(3) 9
(4) 16

Official Ans. by NTA (2)

IEST PAPER WIIH ANSWER

6. Let $\mathrm{A}=\left[\begin{array}{cc}\mathrm{i} & -\mathrm{i} \\ -\mathrm{i} & \mathrm{i}\end{array}\right], \mathrm{i}=\sqrt{-1}$. Then, the system of linear equations $A^{8}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}8 \\ 64\end{array}\right]$ has :
(1) A unique solution
(2) Infinitely many solutions
(3) No solution
(4) Exactly two solutions

Official Ans. by NTA (3)
7. If the three normals drawn to the parabola, $y^{2}=2 x$ pass through the point $(a, 0) a \neq 0$, then 'a' must be greater than :
(1) $\frac{1}{2}$
(2) $-\frac{1}{2}$
(3) -1
(4) 1

Official Ans. by NTA (4)
8. Let the position vectors of two points P and Q be $3 \hat{i}-\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}-4 \hat{k}$, respectively. Let R and S be two points such that the direction ratios of lines PR and QS are $(4,-1,2)$ and $(-2,1,-2)$, respectively. Let lines PR and QS intersect at T. If the vector $\overrightarrow{T A}$ is perpendicular to both $\overrightarrow{\mathrm{PR}}$ and $\overrightarrow{\mathrm{QS}}$ and the length of vector $\overrightarrow{\mathrm{TA}}$ is $\sqrt{5}$ units, then the modulus of a position vector of A is :
(1) $\sqrt{482}$
(2) $\sqrt{171}$
(3) $\sqrt{5}$
(4) $\sqrt{227}$

Official Ans. by NTA (2)
9. Let the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{g}: \mathbb{R} \rightarrow \mathbb{R}$ be defined as :
$f(x)=\left\{\begin{array}{ll}x+2, & x<0 \\ x^{2}, & x \geq 0\end{array}\right.$ and $g(x)= \begin{cases}x^{3}, & x<1 \\ 3 x-2, & x \geq 1\end{cases}$
Then, the number of points in \mathbb{R} where $(f \circ g)(x)$ is NOT differentiable is equal to :
(1) 3
(2) 1
(3) 0
(4) 2

Official Ans. by NTA (2)
10. Which of the following Boolean expression is a tautology?
(1) $(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \vee \mathrm{q})$
(2) $(p \wedge q) \vee(p \rightarrow q)$
(3) $(\mathrm{p} \wedge \mathrm{q}) \wedge(\mathrm{p} \rightarrow \mathrm{q})$
(4) $(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$

Official Ans. by NTA (4)
11. Let a complex number $\mathrm{z},|\mathrm{z}| \neq 1$,
satisfy $\log _{\frac{1}{\sqrt{2}}}\left(\frac{|z|+11}{(|z|-1)^{2}}\right) \leq 2$. Then, the largest value of $|\mathrm{z}|$ is equal to \qquad .
(1) 8
(2) 7
(3) 6
(4) 5

Official Ans. by NTA (2)
12. If n is the number of irrational terms in the expansion of $\left.\left(3^{1 / 4}+5^{1 / 8}\right)\right)^{60}$, then $(n-1)$ is divisible by :
(1) 26
(2) 30
(3) 8
(4) 7

Official Ans. by NTA (1)
13. Let P be a plane $l \mathrm{x}+\mathrm{my}+\mathrm{nz}=0$ containing the line, $\frac{1-\mathrm{x}}{1}=\frac{\mathrm{y}+4}{2}=\frac{\mathrm{z}+2}{3}$. If plane P divides the line segment $A B$ joining points $\mathrm{A}(-3,-6,1)$ and $\mathrm{B}(2,4,-3)$ in ratio $\mathrm{k}: 1$ then the value of k is equal to :
(1) 1.5
(2) 3
(3) 2
(4) 4

Official Ans. by NTA (3)
14. The range of $a \in \mathbb{R}$ for which the function $f(x)=(4 a-3)\left(x+\log _{\mathrm{e}} 5\right)+2(a-7) \cot \left(\frac{x}{2}\right) \sin ^{2}\left(\frac{x}{2}\right)$,
$\mathrm{x} \neq 2 \mathrm{n} \pi, \mathrm{n} \in \mathbb{N}$, has critical points, is :
(1) $(-3,1)$
(2) $\left[-\frac{4}{3}, 2\right]$
(3) $[1, \infty)$
(4) $(-\infty,-1]$

Official Ans. by NTA (2)
15. A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is :
(1) $\frac{3}{4}$
(2) $\frac{52}{867}$
(3) $\frac{39}{50}$
(4) $\frac{22}{425}$

Official Ans. by NTA (3)
16. Let $[x]$ denote greatest integer less than or equal to x. If for $n \in \mathbb{N},\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, then $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j}+1$ is equal to :
(1) 2
(2) 2^{n-1}
(3) 1
(4) n

Official Ans. by NTA (3)
17. If $y=y(x)$ is the solution of the differential equation, $\frac{d y}{d x}+2 y \tan x=\sin x, y\left(\frac{\pi}{3}\right)=0$, then the maximum value of the function $y(x)$ over \mathbb{R} is equal to :
(1) 8
(2) $\frac{1}{2}$
(3) $-\frac{15}{4}$
(4) $\frac{1}{8}$

Official Ans. by NTA (4)
18. The locus of the midpoints of the chord of the circle, $x^{2}+y^{2}=25$ which is tangent to the hyperbola, $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ is :
(1) $\left(x^{2}+y^{2}\right)^{2}-16 x^{2}+9 y^{2}=0$
(2) $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+144 y^{2}=0$
(3) $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}-16 y^{2}=0$
(4) $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+16 y^{2}=0$

Official Ans. by NTA (4)
19. The number of roots of the equation,
$(81)^{\sin ^{2} x}+(81)^{\cos ^{2} x}=30$
in the interval $[0, \pi]$ is equal to :
(1) 3
(2) 4
(3) 8
(4) 2

Official Ans. by NTA (2)
20. Let $S_{k}=\sum_{r=1}^{k} \tan ^{-1}\left(\frac{6^{r}}{2^{2 r+1}+3^{2 r+1}}\right)$. Then $\lim _{\mathrm{k} \rightarrow \infty} \mathrm{S}_{\mathrm{k}}$ is equal to :
(1) $\tan ^{-1}\left(\frac{3}{2}\right)$
(2) $\frac{\pi}{2}$
(3) $\cot ^{-1}\left(\frac{3}{2}\right)$
(4) $\tan ^{-1}(3)$

Official Ans. by NTA (3)

SECTION-B

1. Consider an arithmetic series and a geometric series having four initial terms from the set $\{11$, $8,21,16,26,32,4\}$. If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to \qquad .

Official Ans. by NTA (3)
2. Let $f:(0,2) \rightarrow \mathbb{R}$ be defined as
$f(\mathrm{x})=\log _{2}\left(1+\tan \left(\frac{\pi \mathrm{x}}{4}\right)\right)$.

Then, $\lim _{\mathrm{n} \rightarrow \infty} \frac{2}{\mathrm{n}}\left(f\left(\frac{1}{\mathrm{n}}\right)+f\left(\frac{2}{\mathrm{n}}\right)+\ldots .+f(1)\right)$ is equal to \qquad .

Official Ans. by NTA (1)
3. Let $A B C D$ be a square of side of unit length. Let a circle C_{1} centered at A with unit radius is drawn. Another circle C_{2} which touches C_{1} and the lines $A D$ and $A B$ are tangent to it, is also drawn. Let a tangent line from the point C to the circle C_{2} meet the side $A B$ at E. If the length of EB is $\alpha+\sqrt{3} \beta$, where α, β are integers, then $\alpha+\beta$ is equal to \qquad _.

Official Ans. by NTA (1)
4. If $\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$, then $a+b+c$ is equal to \qquad _.

Official Ans. by NTA (4)
5. The total number of 3×3 matrices A having enteries from the set $(0,1,2,3)$ such that the sum of all the diagonal entries of AA^{T} is 9 , is equal to \qquad _.

Official Ans. by NTA (766)
6. Let

$$
\begin{aligned}
& P=\left[\begin{array}{ccc}
-30 & 20 & 56 \\
90 & 140 & 112 \\
120 & 60 & 14
\end{array}\right] \\
& A=\left[\begin{array}{ccc}
2 & 7 & \omega^{2} \\
-1 & -\omega & 1 \\
0 & -\omega & -\omega+1
\end{array}\right]
\end{aligned}
$$

and
where $\omega=\frac{-1+i \sqrt{3}}{2}$, and I_{3} be the identity matrix of order 3. If the determinant of the matrix $\left(\mathrm{P}^{-1} \mathrm{AP}-\mathrm{I}_{3}\right)^{2}$ is $\alpha \omega^{2}$, then the value of α is equal to \qquad _.

Official Ans. by NTA (36)
7. If the normal to the curve $y(x)=\int_{0}^{x}\left(2 t^{2}-15 t+10\right) d t$ at a point (a, b) is parallel to the line $x+3 y=-5, a>1$, then the value of $l a+6 b l$ is equal to \qquad .

Official Ans. by NTA (406)
8. Let the curve $y=y(x)$ be the solution of the differential equation, $\frac{d y}{d x}=2(x+1)$. If the numerical value of area bounded by the curve $y=y(x)$ and x-axis is $\frac{4 \sqrt{8}}{3}$, then the value of $y(1)$ is equal to \qquad -
Official Ans. by NTA (2)
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(\mathrm{x})+f(\mathrm{x}+1)=2$, for all $\mathrm{x} \in \mathbb{R}$. If $I_{1}=\int_{0}^{8} f(x) d x$ and $I_{2}=\int_{-1}^{3} f(x) d x$, then the value of $\mathrm{I}_{1}+2 \mathrm{I}_{2}$ is equal to \qquad -
Official Ans. by NTA (16)
10. Let z and w be two complex numbers such that $\mathrm{w}=\mathrm{z} \overline{\mathrm{z}}-2 \mathrm{z}+2,\left|\frac{\mathrm{z}+\mathrm{i}}{\mathrm{z}-3 \mathrm{i}}\right|=1$ and $\operatorname{Re}(\mathrm{w})$ has
minimum value. Then, the minimum value of $\mathrm{n} \in \mathbb{N}$ for which w^{n} is real, is equal to \qquad _.

Official Ans. by NTA (4)

