Final JEE - Main Exam March, 2021/17-03-2021/Morning Session

ALLEN

FINAL JEE-MAIN EXAMINATION – MARCH, 2021 (Held On Wednesday 17th March, 2021) TIME: 9:00 AM to 12:00 NOON TEST PAPER WITH ANSWER MATHEMATICS **SECTION-A** 5. If $\cot^{-1}(\alpha) = \cot^{-1} 2 + \cot^{-1} 8 + \cot^{-1} 18$ The inverse of $y = 5^{\log x}$ is : 1. + cot⁻¹ 32 + upto 100 terms, then α is : (1) $x = 5^{\log y}$ (1) 1.01(2) $x = y^{\log 5}$ (2) 1.00 $(3) \quad x = y^{\frac{1}{\log 5}}$ (3) 1.02 (4) 1.03(4) $x = 5^{\frac{1}{\log y}}$ Official Ans. by NTA (1) The equation of the plane which contains the 6. Official Ans. by NTA (3) y-axis and passes through the point (1, 2, 3)Let $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\vec{b} = 7\hat{i} + \hat{j} - 6\hat{k}$. 2. is : (1) x + 3z = 10If $\vec{r} \times \vec{a} = \vec{r} \times \vec{b}$, $\vec{r} \cdot (\hat{i} + 2\hat{j} + \hat{k}) = -3$, then $\vec{r} \cdot (2\hat{i} - 3\hat{j} + \hat{k})$ (2) x + 3z = 0(3) 3x + z = 6is equal to : (4) 3x - z = 0(1) 12Official Ans. by NTA (4) (2) 8(3) 13If $A = \begin{pmatrix} 0 & \sin \alpha \\ \sin \alpha & 0 \end{pmatrix}$ and $det \left(A^2 - \frac{1}{2}I \right) = 0$, then 7. (4) 10 Official Ans. by NTA (1) a possible value of α is In a triangle PQR, the co-ordinates of the points 3. (1) $\frac{\pi}{2}$ P and Q are (-2, 4) and (4, -2) respectively. If the equation of the perpendicular bisector of PR is 2x - y + 2 = 0, then the centre of the (2) $\frac{\pi}{3}$ circumcircle of the $\triangle PQR$ is : (1) (-1, 0)(3) $\frac{\pi}{4}$ (2) (-2, -2)(3) (0, 2) (4) $\frac{\pi}{6}$ (4) (1, 4 Official Ans. by NTA (2) Official Ans. by NTA (3) The system of equations kx + y + z = 1, 4. 8. If the Boolean expression $(p \Rightarrow q) \Leftrightarrow (q * (\sim p))$ x + ky + z = k and $x + y + zk = k^2$ has no solution is a tautology, then the Boolean expression if k is equal to : $p * (\sim q)$ is equivalent to : (1) 0(1) $q \Rightarrow p$ (2) 1(2) $\sim q \Rightarrow p$ (3) $p \Rightarrow \neg q$ (3) - 1(4) $p \Rightarrow q$ (4) - 2Official Ans. by NTA (1) Official Ans. by NTA (4)

Final JEE - Main Exam March, 2021/17-03-2021/Morning Session

- **9.** Two dices are rolled. If both dices have six faces numbered 1,2,3,5,7 and 11, then the probability that the sum of the numbers on the top faces is less than or equal to 8 is :
 - (1) $\frac{4}{9}$
 - (2) $\frac{17}{36}$
 - (3) $\frac{5}{12}$
 - $(4) \frac{1}{2}$

Official Ans. by NTA (2)

- 10. If the fourth term in the expansion of $(x + x^{\log_2 x})^7$ is 4480, then the value of x where
 - $x \in N$ is equal to :
 - (1) 2
 - (2) 4
 - (3) 3
 - (4) 1

Official Ans. by NTA (1)

11. In a school, there are three types of games to be played. Some of the students play two types of games, but none play all the three games. Which Venn diagrams can justify the above statement?

- (1) P and Q
- (2) P and R
- (3) None of these
- (4) Q and R

Official Ans. by NTA (3)

12. The sum of possible values of x for

$$\tan^{-1} (x + 1) + \cot^{-1} \left(\frac{1}{x-1}\right) = \tan^{-1} \left(\frac{8}{31}\right) \text{ is }:$$

$$(1) -\frac{32}{4}$$

$$(2) -\frac{31}{4}$$

$$(3) -\frac{30}{4}$$

$$(4) -\frac{33}{4}$$
Official Ans. by NTA (1)
The area of the triangle with vertices A(z), B(iz) and C (z + iz) is :

(1) 1

13.

- (2) $\frac{1}{2}|z|^2$
- (3) $\frac{1}{2}$ (4) $\frac{1}{2} |z + iz|^2$
- 2 Official Ans. by NTA (2)
- 14. The line 2x y + 1 = 0 is a tangent to the circle at the point (2, 5) and the centre of the circle lies on x - 2y = 4. Then, the radius of the circle is:
 - (1) $3\sqrt{5}$
 - (2) $5\sqrt{3}$
 - (3) $5\sqrt{4}$
 - (4) $4\sqrt{5}$

Official Ans. by NTA (1)

15. Team 'A' consists of 7 boys and n girls and Team 'B' has 4 boys and 6 girls. If a total of 52 single matches can be arranged between these two teams when a boy plays against a boy and a girl plays against a girl, then n is equal to : (1) 5 (2) 2 (3) 4 (4) 6
Official Ans. by NTA (3)

Final JEE-Main Exam March, 2021/17-03-2021/Morning Session

16. The value of $4 + \frac{1}{5 + \frac{1}{4 + \frac{1}{5 + \frac{1}{5$

(1)
$$2 + \frac{2}{5}\sqrt{30}$$

(2) $2 + \frac{4}{\sqrt{5}}\sqrt{30}$
(3) $4 + \frac{4}{\sqrt{5}}\sqrt{30}$
(4) $5 + \frac{2}{5}\sqrt{30}$

Official Ans. by NTA (1)

- **17.** Choose the incorrect statement about the two circles whose equations are given below :
 - $x^2 + y^2 10x 10y + 41 = 0$ and
 - $x^2 + y^2 16x 10y + 80 = 0$
 - Distance between two centres is the average of radii of both the circles.
 - (2) Both circles' centres lie inside region of one another.
 - (3) Both circles pass through the centre of each other.
 - (4) Circles have two intersection points.

Official Ans. by NTA (2)

18. Which of the following statements is incorrect for the function $g(\alpha)$ for $\alpha \in R$ such that

$$g(\alpha) = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin^{\alpha} x}{\cos^{\alpha} x + \sin^{\alpha} x} dx$$

- (1) $g(\alpha)$ is a strictly increasing function
- (2) g(α) has an inflection point at $\alpha = -\frac{1}{2}$
- (3) $g(\alpha)$ is a strictly decreasing function
- (4) $g(\alpha)$ is an even function
- Official Ans. by NTA (4)

Allen Answer (1 or 2 or 3/Bonus)

19. Which of the following is true for y(x) that satisfies the differential equation

$$\frac{dy}{dx} = xy - 1 + x - y ; y(0) = 0:$$
(1) $y(1) = e^{-\frac{1}{2}} - 1$
(2) $y(1) = e^{\frac{1}{2}} - e^{-\frac{1}{2}}$
(3) $y(1) = 1$
(4) $y(1) = e^{\frac{1}{2}} - 1$
Official Ans. by NTA (1)

20. The value of

$$\lim_{x \to 0^+} \frac{\cos^{-1}(x - [x]^2) \cdot \sin^{-1}(x - [x]^2)}{x - x^3}, \text{ where }$$

- [x] denotes the greatest integer \leq_X is :
- (1) π (2) 0
- (3) $\frac{\pi}{4}$
- 4
- (4) $\frac{\pi}{2}$

Official Ans. by NTA (4)

SECTION-B

1. The maximum value of z in the following equation $z = 6xy + y^2$, where $3x + 4y \le 100$ and $4x + 3y \le 75$ for $x \ge 0$ and $y \ge 0$ is ______.

> Official Ans. by NTA (904) Allen Answer (904 or 904.01 or 904.02)

2. If the function $f(x) = \frac{\cos(\sin x) - \cos x}{x^4}$ is

continuous at each point in its domain and

$$f(0) = \frac{1}{k}$$
, then k is _____.

Official Ans. by NTA (6)

Final JEE - Main Exam March, 2021/17-03-2021/Morning Session

6.

8.

3. If
$$f(x) = \sin\left(\cos^{-1}\left(\frac{1-2^{2x}}{1+2^{2x}}\right)\right)$$
 and its first

derivative with respect to x is $-\frac{b}{a}\log_{e} 2$ when

x = 1, where a and b are integers, then the minimum value of $|a^2 - b^2|$ is _____ . Official Ans. by NTA (481)

4. Let there be three independent events E_1 , E_2 and E_3 . The probability that only E_1 occurs is α , only E_2 occurs is β and only E_3 occurs is γ . Let 'p' denote the probability of none of events occurs that satisfies the equations $(\alpha - 2\beta) p = \alpha\beta$ and $(\beta - 3\gamma)p = 2\beta\gamma$. All the given probabilities are assumed to lie in the interval (0, 1).

Then, $\frac{\text{Probability of occurrence of } E_1}{\text{Probability of occurrence of } E_3}$ is equal

to ____.

Official Ans. by NTA (6)

5. If $\vec{a} = \alpha \hat{i} + \beta \hat{j} + 3 \hat{k}$,

 $\vec{b} = -\beta \hat{i} - \alpha \hat{j} - \hat{k}$ and

$$\vec{c} = \hat{i} - 2\hat{j} - \hat{k}$$

such that $\vec{a} \cdot \vec{b} = 1$ and $\vec{b} \cdot \vec{c} = -3$, then

$$\frac{1}{3}((\vec{a} \times \vec{b}) \cdot \vec{c})$$
 is equal to _____

Official Ans. by NTA (2)

If
$$A = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$$
, then the value of

 $det(A^4) + det \left(A^{10} - (Adj(2A))^{10}\right)$ is equal to

Official Ans. by NTA (16)

7. If $[\cdot]$ represents the greatest integer function, then the value of

$$\int_{0}^{\sqrt{\frac{\pi}{2}}} \left[\left[x^{2} \right] - \cos x \right] dx \quad \text{is } ____ .$$

Official Ans. by NTA (1)

The minimum distance between any two points P_1 and P_2 while considering point P_1 on one circle and point P_2 on the other circle for the given circles' equations

$$x^2 + y^2 - 10x - 10y + 41 = 0$$

 $x^{2} + y^{2} - 24x - 10y + 160 = 0$ is _____.

Official Ans. by NTA (1)

9. If the equation of the plane passing through the line of intersection of the planes 2x - 7y + 4z - 3 = 0, 3x - 5y + 4z + 11 = 0 and the point (-2, 1, 3) is ax + by + cz - 7 = 0, then the value of 2a + b + c - 7 is _____.

Official Ans. by NTA (4)

10. If $(2021)^{3762}$ is divided by 17, then the remainder is _____ .

Official Ans. by NTA (4)