132.	Which of the following would help in prevention of	I
	diuresis?	

- (1) More water reabsorption due to undersecretion of ADH
- (2) Reabsorption of Na⁺ and water from renal tubules due to aldosterone
- (3) Atrial natriuretic factor causes vasoconstriction
- (4) Decrease in secretion of renin by JG cells

133. Match the following with respect to meiosis :

- (a) Zygotene (i) Terminalization
- (b) Pachytene (ii) Chiasmata
- (c) Diplotene (iii) Crossing over
- (d) Diakinesis (iv) Synapsis

Select the **correct** option from the following :

	(a)	(b)	(c)	(d)
(1)	(iii)	(iv)	(i)	(ii)
(2)	(iv)	(iii)	(ii)	(i)
(3)	(i)	(ii)	(iv)	(iii)
(4)	(ii)	(iv)	(iii)	(i)

134. Which of the following is **not** an inhibitory substance governing seed dormancy ?

- (1) Gibberellic acid
- (2) Abscisic acid
- (3) Phenolic acid
- (4) Para-ascorbic acid

135. Match the following columns and select the **correct** option.

	Colı	ımn -	I	Column - II	
(a)	Bt co	otton		(i)	Gene therapy
(b)	dean	nosine ninase iency		(ii)	Cellular defence
(c)	RNA	i		(iii)	Detection of HIV infection
(d)	PCR			(iv)	Bacillus thuringiensis
	(a)	(b)	(c)	(d)	
(1)	(iv)	(i)	(ii)	(iii)	
(2)	(iii)	(ii)	(i)	(iv)	
(3)	(ii)	(iii)	(iv)	(i)	
(4)	(i)	(ii)	(iii)	(iv)	

136. Match the following :

- (a) Inhibitor of catalytic (i) Ricin activity
- (b) Possess peptide bonds (ii) Malonate
- (c) Cell wall material in (iii) Chitin fungi
- (d) Secondary metabolite (iv) Collagen Choose the **correct** option from the following :

	(a)	(b)	(c)	(d)
(1)	(ii)	(iv)	(iii)	(i)
(2)	(iii)	(i)	(iv)	(ii)
(3)	(iii)	(iv)	(i)	(ii)
(4)	(ii)	(iii)	(i)	(iv)

- **137.** The sequence that controls the copy number of the linked DNA in the vector, is termed :
 - (1) Selectable marker
 - (2) Ori site
 - (3) Palindromic sequence
 - (4) Recognition site

138. Snow-blindness in Antarctic region is due to :

- (1) Freezing of fluids in the eye by low temperature
- (2) Inflammation of cornea due to high dose of UV-B radiation
- (3) High reflection of light from snow
- (4) Damage to retina caused by infra-red rays
- **139.** According to Robert May, the global species diversity is about :
 - (1) 1.5 million
 - (2) 20 million
 - (3) 50 million
 - (4) 7 million
- **140.** By which method was a new breed 'Hisardale' of sheep formed by using Bikaneri ewes and Marino rams ?
 - (1) Out crossing
 - (2) Mutational breeding
 - (3) Cross breeding
 - (4) Inbreeding
- **141.** Which of the following regions of the globe exhibits highest species diversity ?
 - (1) Western Ghats of India
 - (2) Madagascar
 - (3) Himalayas
 - (4) Amazon forests

- $\mathbf{E2}$
- 142. Match the following columns and select the correct option

	corr	correct option.								
		Colu	imn -	I		Column - II				
	(a)	6 - 15	6 pairs	of	(i)	Trygon				
		gill s								
	(b)	Hete	rocerca	al	(ii)	Cyclostomes				
		caud	al fin							
	(c)	Air B	ladder	•	(iii)	Chondrichthyes				
	(d)	Poise	on stin	g	(iv)	Osteichthyes				
	~ /	(a)	(b)	(c)	(d)	U				
	(1)	(ii)	(iii)	(iv)	(i)					
	(2)	(iii)	(iv)	(i)	(ii)					
	(3)	(iv)	(ii)	(iii)	(i)					
	(4)	(i)	(iv)	(iii)	(ii)					
143.			the f	ollowi	ing st	atements is not				
		ect?		1.						
	(1)		nan 11 Isulin.	nsulii	n is s	ynthesised as a				
	(2)	The	proins	ulin ha	as an e	xtra peptide called				
	$\langle \Omega \rangle$	C-pep	-	1 : .						
	(3)					has A and B chains ogen bonds.				
	(4)	Gene	etically			insulin is produced				
		in <i>E</i> -								
144.	Mate	h the c	organis	sm wit	h its us	se in biotechnology.				
	(a)	Bacil	lus		(i)	Cloning vector				
		thuri	ingiens	sis						
	(b)	Ther	mus		(ii)	Construction of				
		aqua	ticus			first rDNA				
		. 1				molecule				
	(c)	Agro	bacter	ium	(iii)	DNA polymerase				
	(C)	0	facien		(111)	Divispolymerase				
	(1)				(\cdot, \cdot)	0				
	(d)		onella		(iv)	Cry proteins				
	a 1		imuriu		e	.1				
	Selec					n the following :				
	(1)	(a) (ii)	(b)	(c)	(d)					
	(1) (2)		(iv) (iii)	(iii) (i)	(i) (ii)					
	(2) (3)	(iv) (iii)	(iii)		(ii)					
	(4)	(iii)	(iv)	(i)	(ii)					
145.		. ,				s is of unicellular				
140.	algae		ille 101	.10 w 111	g pan	s is of unicential				
	(1)		inaria	and S	argass	um				
	(1) (2)	Laminaria and Sargassum Gelidium and Gracilaria								
	(3)	Anabaena and Volvox								
	(4)				rulina					
146.						ondary oocyte is				
		leted :				J J				
	(1)			lation	<u>l</u>					
	$\langle 0 \rangle$	A + +1.		. C	1	_				

(2)

(3)

(4)

At the time of copulation

At the time of fusion of a sperm with an ovum

After zygote formation

- 147. Secondary metabolites such as nicotine, strychnine and caffeine are produced by plants for their :
 - (1)Nutritive value
 - (2)Growth response
 - (3)Defence action
 - (4)Effect on reproduction
- 148. Which of the following statements are **true** for the phylum-Chordata?
 - In Urochordata notochord extends from (a) head to tail and it is present throughout their life.
 - In Vertebrata notochord is present during (b) the embryonic period only.
 - Central nervous system is dorsal and (c) hollow.
 - Chordata is divided into 3 subphyla : (d) Hemichordata. Tunicata and Cephalochordata.
 - (1)(d) and (c)
 - (c) and (a) (2)
 - (3)(a) and (b)
 - (b) and (c) (4)
- 149. Bt cotton variety that was developed by the introduction of toxin gene of Bacillus thuringiensis (Bt) is resistant to :
 - (1)Insect pests
 - (2)Fungal diseases
 - (3)Plant nematodes
 - (4)Insect predators
- 150. The product(s) of reaction catalyzed by nitrogenase in root nodules of leguminous plants is/are :
 - (1)Ammonia alone
 - (2)Nitrate alone
 - (3)Ammonia and oxygen
 - (4)Ammonia and hydrogen
- 151. Match the following columns and select the correct option.

Column - I Column - II

(a) Pituitary gland (i) Grave's disease Thyroid gland **Diabetes** mellitus (b) (ii) Adrenal gland (iii) **Diabetes** insipidus (c) Addison's disease (d) Pancreas (iv) (a) (b) (d) (c) (iv) (1)(iii) (i) (ii) (2)(iii) (ii) (i) (iv) (3)(iii) (i) (iv) (ii) (4)(ii) (i) (iv) (iii)

18

152.		ch one of the following is the most abundant						1
	prot		the ani)			
	(1)	Haer	moglob	in				
	(2)	Colla	agen					
	(3)	Lect	in					
	(4)	Insu	lin					
153.	Iden	tify th	ne cor :	rect s	tatem	ent wi	th regard to	
	$G_1 p$	hase (Gap 1)	ofinte	rphase	э.		1
	(1)	DNA	A synth	nesis or	replic	eation	akes place.	
	(2)	Reor	ganisa	tion of	fallcel	l comp	onents takes	
		place	э.					
	(3)				-	cive, gr	ows but does	
			replica					
	(4)	Nuc	lear Di	vision	takes	place.		
154.	Mat	ch the t	rophic	levels	with tl	neir co	rrect species	
	exar	nples i	n grass	sland e	ecosyst	em.		
	(a)	Fourth trophic level (i) Crow					Crow	
	(b)	Second trophic level (ii) Vulture						
	(c)	First trophic level (iii) Rabbit						
	(d)	Thir	d tropl	nic leve	(iv)	Grass		
	Sele	ct the o	correc	e t optio	on:			
		(a)	(b)	(c)	(d)			
	(1)	(ii)	(iii)	(iv)	(i)			1

(1)	(ii)	(iii)	(iv)	(i)
(2)	(iii)	(ii)	(i)	(iv)
(3)	(iv)	(iii)	(ii)	(i)
(4)	(i)	(ii)	(iii)	(iv)

155. The ovary is half inferior in :

(1) Brinjal

**** * *

- (2) Mustard
- (3) Sunflower
- (4) Plum
- **156.** The body of the ovule is fused within the funicle at :
 - (1) Hilum
 - (2) Micropyle
 - (3) Nucellus
 - (4) Chalaza
- **157.** The specific palindromic sequence which is recognized by EcoRI is :

(1) 5' - GAATTC - 3'

- 3' CTTAAG 5'
- (2) 5' GGAACC 3'
- 3' CCTTGG 5' (3) 5' - CTTAAG - 3'
- 3' GAATTC 5'
- (4) 5' GGATCC 3' 3' - CCTAGG - 5'

- **158.** Which of the following is **correct** about viroids ?
 - (1) They have RNA with protein coat.
 - (2) They have free RNA without protein coat.
 - (3) They have DNA with protein coat.
 - (4) They have free DNA without protein coat.
- **159.** In water hyacinth and water lily, pollination takes place by :
 - (1) insects or wind
 - (2) water currents only
 - (3) wind and water
 - (4) insects and water
- **160.** The transverse section of a plant shows following anatomical features :
 - (a) Large number of scattered vascular bundles surrounded by bundle sheath.
 - (b) Large conspicuous parenchymatous ground tissue.
 - (c) Vascular bundles conjoint and closed.
 - (d) Phloem parenchyma absent.

Identify the category of plant and its part :

- (1) Monocotyledonous stem
- (2) Monocotyledonous root
- (3) Dicotyledonous stem
- (4) Dicotyledonous root
- **161.** Which of the following statements is **correct** ?
 - (1) Adenine pairs with thymine through two H-bonds.
 - (2) Adenine pairs with thymine through one H-bond.
 - (3) Adenine pairs with thymine through three H-bonds.
 - (4) Adenine does not pair with thymine.
- 162. Select the correct statement.
 - (1) Glucocorticoids stimulate gluconeogenesis.
 - (2) Glucagon is associated with hypoglycemia.
 - (3) Insulin acts on pancreatic cells and adipocytes.
 - (4) Insulin is associated with hyperglycemia.

E2							2	0						
163.	Match the following columns and select the						167.		pers of	Pengu	uns an	ıd Dolp	ohins are examples	
	corr	correct option.							of : (1)	Adar	otive ra	diatio	n	
	(-)		1 mn -]		1	Column - II			(2)	Conv	vergent	tevolu	tion	
	(a)	pest				Asterias		(3) (4)		strial i iral sel		sm		
	(b)		t with			(ii)	Scorpion	168.						ne levels will cause
			metry a bilater			.7			relea follio		ovum	(ovula	ation)	from the graffian
	(c)		lungs	-	ume uj	, (iii)	Ctenoplana		(1)		conce	ntratio	on of E	strogen
	(d)		umines			(iv)	Locusta		(2)					rogesterone
		(a)	(b)	(c)	(d)				(3)		concer			
	(1)	(i)	(iii)	(ii)	(iv)			1.00	(4)		concer			
	(2)	(iv)	(i)	(ii)	(iii)			169.						nsecutive base pairs er of base pairs of a
	(3)	(iii)	(ii)	(i)	(iv)									mammalian cell is
	(4)	(ii)	(i)	(iii)	(iv)							en the	e leng	th of the DNA is
164.		ch the ect op		wing	colum	ns an	d select the		appr (1)	oxima 2.0 n	tely : neters			
	COIL	-	umn -]	r		Colu	ımn - II		(2)		neters			
	(a)				()				(3) (4)		neters neters			
	(a)		nophils	5	(i)		une response	170.	. ,			wing a	colum	ns and select the
	(b)		phils		(ii)		gocytosis			ect op			oor ann	
	(c)	Neut	trophils	s	(iii)	Relea				Colu	1 mn -	I		Column - II
							minase,		(a)	Place	enta		(i)	Androgens
						destructive			(b)	Zona	pelluc	ida	(ii)	Human Chorionic
						enzy	mes							Gonadotropin
	(d)	Lym	phocyt	es	(iv)	Relea	ase granules							(hCG)
							aining		(c)	Bulb	o-uretl	nral	(iii)	Layer of the ovum
						hista	imine			glan	ds			
	(-)	(a)	(b)	(c)	(d)				(d)	Leyd	lig cells	3	(iv)	Lubrication of the
	(1)	(iii) (i-r)	(iv)	(ii)	(i)									Penis
	(2) (3)	(iv) (i)	(i) (ii)	(ii) (iv)	(iii) (iii)					(a)	(b)	(c)	(d)	
	(4)	(i) (ii)	(i)	(iv) (iii)	(iv)				(1)	(iv)	(iii)	(i)	(ii)	
105					. ,	1.	1. 6		(2) (3)	(i) (iii)	(iv) (ii)	(ii) (iv)	(iii) (i)	
165.			of cock ecause		1s rem	oved, 1	t may live for		(4)	(ii)	(iii)	(iv)	(i)	
	(1)	-			ohage	al gar	nglia of the	171.				wing o	colum	ns and select the
				are sit	tuated	in ve	ntral part of		corr	ect op	tion. 1 mn - 1	г		Column - II
		abdo			. 1				(a)		tridiun		(;)	Cyclosporin-A
	(2)						vous system.		(a)			n	(i)	Cyclosporin-A
	(3)						n of a nervous ted along the		4)		licum		<i>(</i>)	D (` A ` 1
			ral par			bituat	the along the					Butyric Acid		
	(4)					f a ner	vous system				sporun	ı	<i>/···</i>	
					situate	ed alor	ng the dorsal		(c)		ascus		(iii)	Citric Acid
		part	of its b	ody.							ureus		<i>.</i>	
166.			-			tes ope	ening of DNA		(d)	Aspe	rgillus	niger	(iv)	Blood cholesterol
			g trans		on.									lowering agent
	(1)		ligase						(-)	(a)	(b)	(c)	(d)	
	(2)		helica						(1) (2)	(iii) (ii)	(iv) (i)	(ii) (iv)	(i) (iii)	
	(3) (4)		a polym A polym						(2) (3)	(i)	(ii)	(iv) (iv)	(iii)	
	(1)	101 111	- P 01 y 111						(4)	(iv)	(iii)	(ii)	(i)	

	of :											
	(1)			diatior								
	(2)			t evolut								
	(3)			melani	sm							
	(4)			ection								
168.		ich of the following hormone levels will cause										
		ease of ovum (ovulation) from the graffian										
	follic				съ							
	(1)	High concentration of Estrogen										
	(2) (3)	High concentration of Progesterone Low concentration of LH										
	(4)	Low concentration of LH Low concentration of FSH										
169.						secutive base pairs						
105.						er of base pairs of a						
						mammalian cell is						
						th of the DNA is						
		oximat			-							
	(1)		neters									
	(2)		neters									
	(3)		neters									
	(4)		neters									
170.				wing c	olum	ns and select the						
	corre	ect opt		r								
			ımn -	L		Column - II						
	(a)	Place	enta		(i)	Androgens						
	(b)	Zona	pelluc	eida	(ii)	Human Chorionic						
						Gonadotropin						
						(hCG)						
	(a)	Dulh	o-uretl	anal	(:::)							
	(c)			irai	(iii)	Layer of the ovum						
		gland	ls									
	(d)	Leyd	ig cells	3	(iv)	Lubrication of the						
						Penis						
		(a)	(b)	(c)	(d)							
	(1)	(iv)	(iii)	(i)	(ii)							
	(2)	(i)	(iv)	(ii)	(iii)							
	(3)	(iii)	(ii)	(iv)	(i)							
	(4)			(iv)								
171.				wing c	olum	ns and select the						
	corre	ect opt	umn - 1	г		Column - II						
					(1)							
	(a)		ridiun	n	(i)	Cyclosporin-A						
		butyl	licum									
	(b)	Trick	nodern	ıa	(ii)	Butyric Acid						
		polvs	porun	ı								
	(c)	Mone			(iii)	Citric Acid						
	(0)				()	ontronicia						
	(1)		ureus	•	(\cdot)							
	(d)	Aspe	rgillus	sniger	(iv)	Blood cholesterol						
						lowering agent						
		(a)	(b)	(c)	(d)							
	(1)	(iii)	(iv)	(ii)	(i)							
	(2)	(ii)	(i)	(iv)	(iii)							
	(3)	(i)	(ii)	(iv)	(iii)							
	(4)	(iv)	(iii)	(ii)	(i)							

E2

- **172.** Goblet cells of alimentary canal are modified from :
 - (1) Squamous epithelial cells
 - (2) Columnar epithelial cells
 - (3) Chondrocytes
 - (4) Compound epithelial cells
- **173.** Experimental verification of the chromosomal theory of inheritance was done by :
 - (1) Mendel
 - (2) Sutton
 - (3) Boveri
 - (4) Morgan
- **174.** The process responsible for facilitating loss of water in liquid form from the tip of grass blades at night and in early morning is :
 - (1) Transpiration
 - (2) Root pressure
 - (3) Imbibition
 - (4) Plasmolysis
- **175.** Identify the substances having glycosidic bond and peptide bond, respectively in their structure :
 - (1) Chitin, cholesterol
 - (2) Glycerol, trypsin
 - (3) Cellulose, lecithin
 - (4) Inulin, insulin
- **176.** Which of the following is **not** an attribute of a population ?
 - (1) Sex ratio
 - (2) Natality
 - (3) Mortality
 - (4) Species interaction
- 177. The enzyme enterokinase helps in conversion of :
 - (1) protein into polypeptides
 - (2) trypsinogen into trypsin
 - (3) caseinogen into casein
 - (4) pepsinogen into pepsin

- 178. Some dividing cells exit the cell cycle and enter vegetative inactive stage. This is called quiescent stage (G_0). This process occurs at the end of :
 - (1) M phase
 - (2) G_1 phase
 - (3) S phase
 - (4) G_2 phase
- **179.** In relation to Gross primary productivity and Net primary productivity of an ecosystem, which one of the following statements is **correct** ?
 - (1) Gross primary productivity is always less than net primary productivity.
 - (2) Gross primary productivity is always more than net primary productivity.
 - (3) Gross primary productivity and Net primary productivity are one and same.
 - (4) There is no relationship between Gross primary productivity and Net primary productivity.
- **180.** Which of the following is put into Anaerobic sludge digester for further sewage treatment ?
 - (1) Primary sludge
 - (2) Floating debris
 - (3) Effluents of primary treatment
 - (4) Activated sludge

- o 0 o -