(a)		Inhibitor of catalytic activity				Ricin
(b)	Poss	ess pep	(ii)	Malonat		
(c)	Cell wall material in fungi				(iii)	Chitin
		Secondary metabolite				A 11
(d)	Seco	ndary	metabo	olite	(iv)	Collager
. ,		· ·				0
. ,		· ·				0
. ,	ose the	corre	ect opt	ion fro		0
Cho	ose the (a)	corre (b)	ect opt (c) (iv)	ion fro (d)		0
Choo (1)	ose the (a) (iii)	corre (b) (i)	ect opt (c) (iv)	ion fro (d) (ii)		Collager

87.

88.

	Column - I				Column - II
(a)	Pituitary gland			(i)	Grave's disease
(b)	Thyroid gland			(ii)	Diabetes mellitus
(c)	Adrenal gland			(iii)	Diabetes insipidus
(d)	Pane	Pancreas			Addison's disease
	(a)	(b)	(c)	(d)	
(1)	(iii)	(ii)	(i)	(iv)	
(2)	(iii)	(i)	(iv)	(ii)	
(3)	(ii)	(i)	(iv)	(iii)	
(4)	(iv)	(iii)	(i)	(ii)	

- **89.** The transverse section of a plant shows following anatomical features :
 - (a) Large number of scattered vascular bundles surrounded by bundle sheath.
 - (b) Large conspicuous parenchymatous ground tissue.
 - $(c) \qquad {\rm Vascular\ bundles\ conjoint\ and\ closed}.$
 - (d) Phloem parenchyma absent.

 $Identify the \, category \, of \, plant \, and \, its \, part:$

- (1) Monocotyledonous root
- (2) Dicotyledonous stem
- (3) Dicotyledonous root
- (4) Monocotyledonous stem

1	1	
T	T	

the

- 90. In light reaction, plastoquinone facilitates the transfer of electrons from : Cytb₆f complex to PS-I (1)(2)PS-I to NADP+ (3)PS-I to ATP synthase (4)PS-II to Cytb₆f complex 91. Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is : 1.83×10^{-7} rad (1) 7.32×10^{-7} rad (2) 6.00×10^{-7} rad (3) 3.66×10^{-7} rad (4)
 - 92. When a uranium isotope $^{235}_{92}$ U is bombarded with a neutron, it generates $^{89}_{36}$ Kr, three neutrons and :
 - (1) ${}^{91}_{40}$ Zr

(2)
$$\frac{101}{36}$$
Kr

(3)
$$^{103}_{36}$$
Kr

- (4) $^{144}_{56}$ Ba
- 93. A short electric dipole has a dipole moment of 16×10^{-9} C m. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole, situated on a line making an angle of 60° with the dipole axis is :

$$\begin{pmatrix} \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2 \\ (1) & 200 \text{ V} \\ (2) & 400 \text{ V} \\ (3) & \text{zero} \\ (4) & 50 \text{ V} \\ \end{cases}$$

- 94. A ray is incident at an angle of incidence *i* on one surface of a small angle prism (with angle of prism A) and emerges normally from the opposite surface. If the refractive index of the material of the prism is μ, then the angle of incidence is nearly equal to :
 - (1) $\frac{2A}{\mu}$ (2) μA (3) $\frac{\mu A}{2}$ (4) $\frac{A}{2\mu}$

- **95.** A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth ?
 - (1) 32 N
 - (2) 30 N
 - (3) 24 N
 - (4) 48 N
- **96.** For which one of the following, Bohr model is **not** valid ?
 - (1) Singly ionised helium atom (He^+)
 - (2) Deuteron atom
 - (3) Singly ionised neon atom (Ne^+)
 - (4) Hydrogen atom
- **97.** A capillary tube of radius r is immersed in water and water rises in it to a height h. The mass of the water in the capillary is 5 g. Another capillary tube of radius 2r is immersed in water. The mass of water that will rise in this tube is :
 - (1) 5.0 g
 - (2) 10.0 g
 - (3) 20.0 g
 - (4) 2.5 g
- **98.** A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale.

The pitch of the screw gauge is :

- $(1) \quad 0.25 \text{ mm}$
- $(2) \quad 0.5 \text{ mm}$
- (3) 1.0 mm
- (4) 0.01 mm
- 99. An iron rod of susceptibility 599 is subjected to a magnetising field of 1200 A m⁻¹. The permeability of the material of the rod is :

 $(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$

- (1) $8.0 \times 10^{-5} \,\mathrm{T \ m \ A^{-1}}$
- (2) $2.4\pi \times 10^{-5} \text{ T m A}^{-1}$
- (3) $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- (4) $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$

100. The phase difference between displacement and acceleration of a particle in a simple harmonic motion is :

(1)
$$\frac{3\pi}{2}$$
 rad

(2)
$$\frac{\pi}{2}$$
 rad

- (3) zero
- (4) π rad

101. The energy equivalent of 0.5 g of a substance is :

- (1) $4.5 \times 10^{13} \,\mathrm{J}$
- (2) $1.5 \times 10^{13} \,\mathrm{J}$
- (3) $0.5 \times 10^{13} \,\mathrm{J}$
- (4) $4.5 \times 10^{16} \,\mathrm{J}$
- 102. A resistance wire connected in the left gap of a metre bridge balances a 10 Ω resistance in the right gap at a point which divides the bridge wire in the ratio 3 : 2. If the length of the resistance wire is 1.5 m, then the length of 1 Ω of the resistance wire is :
 - (1) $1.0 \times 10^{-1} \text{ m}$
 - (2) $1.5 \times 10^{-1} \text{ m}$
 - (3) $1.5 \times 10^{-2} \text{ m}$
 - (4) $1.0 \times 10^{-2} \,\mathrm{m}$
- 103. The average thermal energy for a mono-atomic gas is : (k_B is Boltzmann constant and T, absolute temperature)

(1)
$$\frac{3}{2} k_{B}T$$

(2) $\frac{5}{2} k_{B}T$
(3) $\frac{7}{2} k_{B}T$
(4) $\frac{1}{2} k_{B}T$

- **104.** The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is : (c = speed of electromagnetic waves)
 - (1) 1:1
 - (2) 1 : c
 - (3) $1:c^2$
 - (4) c:1

- 105. A ball is thrown vertically downward with a velocity of 20 m/s from the top of a tower. It hits the ground after some time with a velocity of 80 m/s. The height of the tower is : $(g = 10 \text{ m/s}^2)$
 - (1) 340 m
 - (2) 320 m
 - (3) 300 m
 - (4) 360 m
- **106.** A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of the solenoid is :
 - $(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$
 - (1) $3.14 \times 10^{-4} \,\mathrm{T}$
 - (2) $6.28 \times 10^{-5} \,\mathrm{T}$
 - (3) $3.14 \times 10^{-5} \,\mathrm{T}$
 - (4) $6.28 \times 10^{-4} \,\mathrm{T}$
- **107.** Taking into account of the significant figures, what is the value of 9.99 m 0.0099 m?
 - (1) 9.98 m
 - (2) 9.980 m
 - (3) 9.9 m
 - (4) 9.9801 m
- **108.** Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled ?
 - (1) four times
 - (2) one-fourth
 - (3) zero
 - (4) doubled
- **109.** The color code of a resistance is given below :

The values of resistance and tolerance, respectively, are :

- (1) $47 \text{ k}\Omega, 10\%$
- (2) $4.7 \text{ k}\Omega, 5\%$
- (3) $470 \Omega, 5\%$
- (4) 470 k Ω , 5%

110. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass.

The centre of mass of the system from the 5 kg particle is nearly at a distance of :

- (1) 50 cm
- (2) 67 cm
- (3) 80 cm
- (4) 33 cm
- **111.** For transistor action, which of the following statements is **correct** ?
 - (1) Base, emitter and collector regions should have same size.
 - (2) Both emitter junction as well as the collector junction are forward biased.
 - (3) The base region must be very thin and lightly doped.
 - (4) Base, emitter and collector regions should have same doping concentrations.
- **112.** The mean free path for a gas, with molecular diameter d and number density n can be expressed as :

(1)
$$\frac{1}{\sqrt{2} \ n\pi d^2}$$

(2) $\frac{1}{\sqrt{2} \ n^2\pi d^2}$
(3) $\frac{1}{\sqrt{2} \ n^2\pi^2 d^2}$
(4) $\frac{1}{\sqrt{2} \ n^2\pi^2 d^2}$

(4)
$$\sqrt{2} n\pi d$$

 A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27°C.

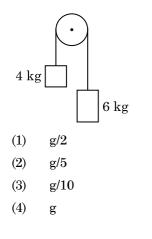
Its density is : $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$

- (1) 0.2 kg/m^3
- (2) 0.1 kg/m^3
- (3) 0.02 kg/m^3
- (4) 0.5 kg/m^3
- 114. A charged particle having drift velocity of 7.5×10^{-4} m s⁻¹ in an electric field of 3×10^{-10} Vm⁻¹, has a mobility in m² V⁻¹ s⁻¹ of:
 - (1) 2.5×10^6
 - (2) 2.5×10^{-6}
 - (3) 2.25×10^{-15}
 - (4) 2.25×10^{15}

$\mathbf{G4}$

115. Dimensions of stress are :

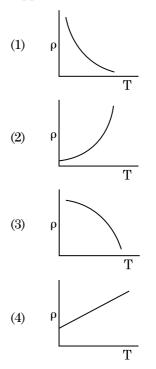
- (1) $[ML^2T^{-2}]$
- (2) $[ML^0T^{-2}]$
- (3) $[ML^{-1}T^{-2}]$
- (4) $[MLT^{-2}]$
- **116.** A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire changes to L_1 when mass M is suspended from its free end. The expression for Young's modulus is :


$$(1) \qquad \frac{Mg(L_1 - L)}{AL}$$

$$(2) \qquad \frac{MgL}{AL_1}$$

$$(3) \qquad \frac{MgL}{A(L_1 - L)}$$

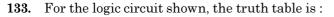
$$(4) \qquad \frac{MgL_1}{AL}$$

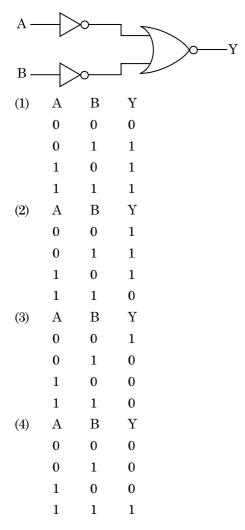

- 117. In a guitar, two strings A and B made of same material are slightly out of tune and produce beats of frequency 6 Hz. When tension in B is slightly decreased, the beat frequency increases to 7 Hz. If the frequency of A is 530 Hz, the original frequency of B will be :
 - $(1) \qquad 524\,\mathrm{Hz}$
 - (2) 536 Hz
 - (3) 537 Hz
 - (4) 523 Hz
- 118. Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a pulley which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity (g) is :

119. The capacitance of a parallel plate capacitor with air as medium is $6 \ \mu F$. With the introduction of a dielectric medium, the capacitance becomes $30 \ \mu F$. The permittivity of the medium is :

$$(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2})$$

- (1) $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (2) $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (3) $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (4) $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- **120.** In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes :
 - (1) half
 - (2) four times
 - (3) one-fourth
 - (4) double
- 121. Light with an average flux of 20 W/cm² falls on a non-reflecting surface at normal incidence having surface area 20 cm². The energy received by the surface during time span of 1 minute is :
 - (1) $12 \times 10^3 \, J$
 - (2) $24 \times 10^3 \,\mathrm{J}$
 - (3) $48 \times 10^3 \,\mathrm{J}$
 - (4) $10 \times 10^3 \,\mathrm{J}$
- 122. Which of the following graph represents the variation of resistivity (ρ) with temperature (T) for copper ?




- 123. The quantities of heat required to raise the temperature of two solid copper spheres of radii r_1 and r_2 ($r_1 = 1.5 r_2$) through 1 K are in the ratio :
 - (1) $\frac{9}{4}$ (2) $\frac{3}{2}$ (3) $\frac{5}{3}$
 - (4) $\frac{27}{8}$
- 124. Find the torque about the origin when a force of $3\hat{j}$ N acts on a particle whose position vector is $2\hat{k}$ m.
 - (1) $6\hat{j}$ N m
 - (2) $-6\hat{i}$ N m
 - (3) $6\hat{k}$ N m
 - (4) $6\hat{i}$ N m
- 125. In a certain region of space with volume 0.2 m³, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is :
 - (1) 0.5 N/C
 - (2) 1 N/C
 - (3) 5 N/C
 - (4) zero
- 126. The Brewsters angle i_b for an interface should be :
 - (1) $30^{\circ} < i_b < 45^{\circ}$
 - (2) $45^{\circ} < i_b < 90^{\circ}$
 - (3) $i_b = 90^{\circ}$
 - (4) $0^{\circ} < i_h < 30^{\circ}$
- **127.** The increase in the width of the depletion region in a p-n junction diode is due to :
 - (1) reverse bias only
 - (2) both forward bias and reverse bias
 - (3) increase in forward current
 - (4) forward bias only

128. A spherical conductor of radius 10 cm has a charge of 3.2×10^{-7} C distributed uniformly. What is the magnitude of electric field at a point 15 cm from the centre of the sphere ?

$$\begin{pmatrix} \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2 \\ (1) & 1.28 \times 10^5 \text{ N/C} \\ (2) & 1.28 \times 10^6 \text{ N/C} \end{cases}$$

- (3) 1.28×10^7 N/C
- (4) $1.28 \times 10^4 \text{ N/C}$
- **129.** The energy required to break one bond in DNA is 10^{-20} J. This value in eV is nearly :
 - (1) 0.6
 - (2) 0.06
 - (3) 0.006
 - (4) 6
- 130. A 40 μF capacitor is connected to a 200 V, 50 Hz ac supply. The rms value of the current in the circuit is, nearly :
 - $(1) 2.05 \,\mathrm{A}$
 - (2) $2.5 \,\mathrm{A}$
 - (3) $25.1 \,\mathrm{A}$
 - (4) 1.7 A
- 131. An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is 1.227×10^{-2} nm, the potential difference is :
 - (1) $10^2 \, V$
 - (2) 10³ V
 - (3) 10⁴ V
 - (4) 10 V
- 132. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is :
 - (1) adiabatic
 - (2) isochoric
 - (3) isobaric
 - (4) isothermal

- **134.** The solids which have the negative temperature coefficient of resistance are :
 - (1) insulators only
 - (2) semiconductors only
 - (3) insulators and semiconductors
 - (4) metals

135. A series LCR circuit is connected to an ac voltage source. When L is removed from the circuit, the phase difference between current and voltage is $\frac{\pi}{3}$. If instead C is removed from the circuit, the phase difference is again $\frac{\pi}{3}$ between current and voltage. The power factor of the circuit is : (1) 0.5

- (1) 0.5
- (2) 1.0
- (3) -1.0
- (4) zero

136. Hydrolysis of sucrose is given by the following reaction.

 $Sucrose + H_2O \rightleftharpoons Glucose + Fructose$

If the equilibrium constant (K_c) is 2×10^{13} at 300 K, the value of $\Delta_r G^{\ominus}$ at the same temperature will be :

- (1) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (2) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(3 \times 10^{13})$
- (3) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(4 \times 10^{13})$
- (4) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- **137.** Which one of the followings has maximum number of atoms ?
 - (1) $1 \operatorname{g} \operatorname{of} Mg(s)$ [Atomic mass of Mg = 24]
 - (2) $1 \operatorname{g} \operatorname{of} O_2(g)$ [Atomic mass of O = 16]
 - (3) 1 g of Li(s) [Atomic mass of Li = 7]
 - (4) $1 \operatorname{g} \operatorname{of} \operatorname{Ag}(s)$ [Atomic mass of Ag = 108]
- **138.** Which of the following is **not** correct about carbon monoxide ?
 - (1) It reduces oxygen carrying ability of blood.
 - (2) The carboxyhaemoglobin (haemoglobin bound to CO) is less stable than oxyhaemoglobin.
 - (3) It is produced due to incomplete combustion.
 - (4) It forms carboxyhaemoglobin.
- 139. The calculated spin only magnetic moment of Cr^{2+} ion is :
 - (1) 4.90 BM
 - $(2) \qquad 5.92 \,\mathrm{BM}$
 - (3) 2.84 BM
 - (4) 3.87 BM
- 140. Which of the following is a natural polymer?
 - (1) poly (Butadiene-styrene)
 - (2) polybutadiene
 - (3) poly (Butadiene-acrylonitrile)
 - (4) *cis*-1,4-polyisoprene
- 141. Which of the following is a basic amino acid?
 - (1) Alanine
 - (2) Tyrosine
 - (3) Lysine
 - (4) Serine