**86.** Which of the following is **not** an inhibitory substance governing seed dormancy?

- (1) Phenolic acid
- (2) Para-ascorbic acid
- (3) Gibberellic acid
- (4) Abscisic acid
- 87. Match the following columns and select the **correct** option.

|     | Colu            | ımn -          | I    | Column - II                           |                                 |  |
|-----|-----------------|----------------|------|---------------------------------------|---------------------------------|--|
| (a) | Orga            | Organ of Corti |      |                                       | Connects middle ear and pharynx |  |
| (b) | Cochlea         |                |      | (ii)                                  | Coiled part of the labyrinth    |  |
| (c) | Eustachian tube |                |      | (iii)                                 | Attached to the oval window     |  |
| (d) | Stapes          |                | (iv) | Located on the<br>basilar<br>membrane |                                 |  |
|     | (a)             | (b)            | (c)  | (d)                                   |                                 |  |
| (1) | (iv)            | (ii)           | (i)  | (iii)                                 |                                 |  |
| (2) | (i)             | (ii)           | (iv) | (iii)                                 |                                 |  |
| (3) | (ii)            | (iii)          | (i)  | (iv)                                  |                                 |  |
| (4) | (iii)           | (i)            | (iv) | (ii)                                  |                                 |  |

- 88. The enzyme enterokinase helps in conversion of :
  - (1) caseinogen into casein
  - (2) pepsinogen into pepsin
  - (3) protein into polypeptides
  - (4) trypsinogen into trypsin
- **89.** Presence of which of the following conditions in urine are indicative of Diabetes Mellitus ?
  - (1) Ketonuria and Glycosuria
  - (2) Renal calculi and Hyperglycaemia
  - (3) Uremia and Ketonuria
  - (4) Uremia and Renal Calculi
- **90.** The process responsible for facilitating loss of water in liquid form from the tip of grass blades at night and in early morning is :
  - (1) Imbibition
  - (2) Plasmolysis
  - (3) Transpiration
  - (4) Root pressure

**91.** A short electric dipole has a dipole moment of  $16 \times 10^{-9}$  C m. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole, situated on a line making an angle of 60° with the dipole axis is :

$$\begin{pmatrix} \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2 \\ (1) & 400 \text{ V} \\ (2) & \text{zero} \\ (3) & 50 \text{ V} \\ (4) & 200 \text{ V} \\ \end{cases}$$

- 92. A series LCR circuit is connected to an ac voltage source. When L is removed from the circuit, the phase difference between current and voltage is  $\frac{\pi}{3}$ . If instead C is removed from the circuit, the phase difference is again  $\frac{\pi}{3}$  between current and voltage. The power factor of the circuit is :
  - (1) 1.0
  - (2) -1.0
  - (3) zero
  - (4) 0.5
- **93.** Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled ?
  - (1) one-fourth
  - (2) zero
  - (3) doubled
  - (4) four times
- **94.** Dimensions of stress are :
  - (1)  $[ML^0T^{-2}]$
  - (2)  $[ML^{-1}T^{-2}]$
  - (3)  $[MLT^{-2}]$
  - (4)  $[ML^2T^{-2}]$
- **95.** An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is  $1.227 \times 10^{-2}$  nm, the potential difference is :
  - (1)  $10^3 V$
  - (2)  $10^4 \,\mathrm{V}$
  - (3) 10 V
  - (4)  $10^2 \,\mathrm{V}$

- F1
- 96. The capacitance of a parallel plate capacitor with air as medium is 6 µF. With the introduction of a dielectric medium, the capacitance becomes  $30 \,\mu\text{F}$ . The permittivity of the medium is :
  - $(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2})$
  - $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ (1)
  - $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ (2)
  - $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ (3)
  - $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ (4)
- 97. The solids which have the negative temperature coefficient of resistance are :
  - semiconductors only (1)
  - (2)insulators and semiconductors
  - (3)metals
  - (4)insulators only
- 98. For transistor action, which of the following statements is correct?
  - Both emitter junction as well as the collector (1)junction are forward biased.
  - (2)The base region must be very thin and lightly doped.
  - (3)Base, emitter and collector regions should have same doping concentrations.
  - Base, emitter and collector regions should (4)have same size.
- 99. A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale.

The pitch of the screw gauge is :

- (1)0.5 mm
- (2)1.0 mm
- (3)0.01 mm
- (4)0.25 mm
- The phase difference between displacement and 100. acceleration of a particle in a simple harmonic motion is :
  - $\frac{\pi}{2}$  rad (1)
  - (2)zero
  - (3) $\pi$  rad

(4) 
$$\frac{3\pi}{2}$$
 rad

**101.** A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of the solenoid is :

$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

- $6.28 \times 10^{-5} \,\mathrm{T}$ (1)
- $3.14 \times 10^{-5} \,\mathrm{T}$ (2)
- (3) $6.28 \times 10^{-4} \,\mathrm{T}$
- $3.14 \times 10^{-4} \mathrm{T}$ (4)
- 102. A ball is thrown vertically downward with a velocity of 20 m/s from the top of a tower. It hits the ground after some time with a velocity of 80 m/s. The height of the tower is :  $(g = 10 \text{ m/s}^2)$ 
  - 320 m (1)
  - 300 m (2)
  - (3)360 m
  - 340 m (4)

103. The color code of a resistance is given below :



Gold

The values of resistance and tolerance, respectively, are :

- (1)4.7 kΩ, 5%
- (2)470 Ω, 5%
- (3)470 kΩ, 5%
- 47 kΩ, 10% (4)
- 104. The Brewsters angle  $i_b$  for an interface should be :
  - (1) $45^{\circ} < i_b < 90^{\circ}$
  - $i_{b} = 90^{\circ}$ (2)
  - $0^{\circ} < i_{b} < 30^{\circ}$ (3)
  - $30^{\circ} < i_h < 45^{\circ}$ (4)
- **105.** A ray is incident at an angle of incidence *i* on one surface of a small angle prism (with angle of prism A) and emerges normally from the opposite surface. If the refractive index of the material of the prism is  $\mu$ , then the angle of incidence is nearly equal to:
  - (1)μA
  - (2) $\mathbf{2}$ А (3)2μ 2A

(4) 
$$\frac{\mu}{\mu}$$

- 106. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is :
  - (1) isochoric
  - (2) isobaric
  - (3) isothermal
  - (4) adiabatic
- **107.** For which one of the following, Bohr model is **not** valid ?
  - (1) Deuteron atom
  - (2) Singly ionised neon atom (Ne $^+$ )
  - (3) Hydrogen atom
  - (4) Singly ionised helium atom (He $^+$ )
- 108. Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a pulley which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity (g) is :



- (4) g/2
- 109. In a certain region of space with volume 0.2 m<sup>3</sup>, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is :
  - (1) 1 N/C
  - (2) 5 N/C
  - (3) zero
  - (4) 0.5 N/C

- 110. When a uranium isotope  ${}^{235}_{92}$ U is bombarded with a neutron, it generates  ${}^{89}_{36}$ Kr, three neutrons and :
  - (1)  ${}^{101}_{36}$ Kr
  - (2)  ${}^{103}_{36}$ Kr
  - (3)  $^{144}_{56}$ Ba
  - (4)  ${}^{91}_{40}$ Zr
- 111. The energy equivalent of  $0.5 ext{ g of a substance is }$ :
  - (1)  $1.5 \times 10^{13} \,\mathrm{J}$
  - (2)  $0.5 \times 10^{13} \,\mathrm{J}$
  - (3)  $4.5 \times 10^{16} \,\mathrm{J}$
  - (4)  $4.5 \times 10^{13} \,\mathrm{J}$
- **112.** The mean free path for a gas, with molecular diameter d and number density n can be expressed as :

(1) 
$$\frac{1}{\sqrt{2} n^2 \pi d^2}$$
  
(2)  $\frac{1}{\sqrt{2} n^2 \pi^2 d^2}$   
(3)  $\frac{1}{\sqrt{2} n \pi d}$   
(4)  $\frac{1}{\sqrt{2} n \pi d^2}$ 

113. A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire changes to  $L_1$  when mass M is suspended from its free end. The expression for Young's modulus is :

(1) 
$$\frac{\text{MgL}}{\text{AL}_{1}}$$
(2) 
$$\frac{\text{MgL}}{\text{A}(\text{L}_{1} - \text{L})}$$
(3) 
$$\frac{\text{MgL}_{1}}{\text{AL}}$$
(4) 
$$\frac{\text{Mg}(\text{L}_{1} - \text{L})}{\text{AL}}$$

114. A spherical conductor of radius 10 cm has a charge of  $3.2 \times 10^{-7}$  C distributed uniformly. What is the magnitude of electric field at a point 15 cm from the centre of the sphere ?

$$\begin{pmatrix} \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2 \\ (1) & 1.28 \times 10^6 \text{ N/C} \\ (2) & 1.28 \times 10^7 \text{ N/C} \\ (3) & 1.28 \times 10^4 \text{ N/C} \\ (4) & 1.28 \times 10^5 \text{ N/C} \\ \end{cases}$$

- **115.** The energy required to break one bond in DNA is  $10^{-20}$  J. This value in eV is nearly :
  - (1) 0.06
  - (2) 0.006
  - (3) 6
  - (4) 0.6
- **116.** A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth ?
  - (1) 30 N
  - (2) 24 N
  - (3) 48 N
  - (4) 32 N
- 117. For the logic circuit shown, the truth table is :



- **118.** In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes :
  - (1) four times
  - (2) one-fourth
  - (3) double
  - (4) half

- 119. A capillary tube of radius r is immersed in water and water rises in it to a height h. The mass of the water in the capillary is 5 g. Another capillary tube of radius 2r is immersed in water. The mass of water that will rise in this tube is :
  - (1) 10.0 g
  - (2) 20.0 g
  - (3) 2.5 g
  - (4) 5.0 g
- **120.** A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27°C.

Its density is :  $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$ 

- (1)  $0.1 \text{ kg/m}^3$
- (2)  $0.02 \text{ kg/m}^3$
- (3)  $0.5 \text{ kg/m}^3$
- (4)  $0.2 \text{ kg/m}^3$
- 121. An iron rod of susceptibility 599 is subjected to a magnetising field of 1200 A m<sup>-1</sup>. The permeability of the material of the rod is:

 $(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$ 

- (1)  $2.4\pi \times 10^{-5} \text{ T m A}^{-1}$
- (2)  $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- (3)  $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$
- (4)  $8.0 \times 10^{-5} \,\mathrm{T m A^{-1}}$
- 122. Find the torque about the origin when a force of 3j N acts on a particle whose position vector is 2k m.
  - (1)  $-6\hat{i}$  N m
  - (2)  $6\dot{k}$  N m
  - (3)  $6\hat{i}$  N m
  - (4)  $6\hat{j}$  N m
- 123. The average thermal energy for a mono-atomic gas is : ( $k_B$  is Boltzmann constant and T, absolute temperature)

(1) 
$$\frac{5}{2} k_{B}T$$
  
(2)  $\frac{7}{2} k_{B}T$   
(3)  $\frac{1}{2} k_{B}T$   
(4)  $\frac{3}{2} k_{B}T$ 

- **124.** Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is :
  - (1)  $7.32 \times 10^{-7}$  rad
  - (2)  $6.00 \times 10^{-7}$  rad
  - (3)  $3.66 \times 10^{-7}$  rad
  - (4)  $1.83 \times 10^{-7}$  rad
- 125. Light with an average flux of 20 W/cm<sup>2</sup> falls on a non-reflecting surface at normal incidence having surface area 20 cm<sup>2</sup>. The energy received by the surface during time span of 1 minute is :
  - (1)  $24 \times 10^3 \,\mathrm{J}$
  - (2)  $48 \times 10^3 \, \text{J}$
  - (3)  $10 \times 10^3 \,\mathrm{J}$
  - (4)  $12 \times 10^3 \,\mathrm{J}$
- **126.** The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is : (c = speed of electromagnetic waves)
  - (1) 1 : c
  - (2)  $1:c^2$
  - (3) c:1
  - (4) 1:1
- 127. Which of the following graph represents the variation of resistivity ( $\rho$ ) with temperature (T) for copper ?



- 128. The quantities of heat required to raise the temperature of two solid copper spheres of radii  $r_1$  and  $r_2$  ( $r_1 = 1.5 r_2$ ) through 1 K are in the ratio:
  - (1)  $\frac{3}{2}$ (2)  $\frac{5}{3}$ (3)  $\frac{27}{8}$ (4)  $\frac{9}{4}$
- **129.** A resistance wire connected in the left gap of a metre bridge balances a 10  $\Omega$  resistance in the right gap at a point which divides the bridge wire in the ratio 3 : 2. If the length of the resistance wire is 1.5 m, then the length of 1  $\Omega$  of the resistance wire is :
  - (1)  $1.5 \times 10^{-1} \text{ m}$
  - (2)  $1.5 \times 10^{-2} \text{ m}$
  - (3)  $1.0 \times 10^{-2} \,\mathrm{m}$
  - (4)  $1.0 \times 10^{-1} \text{ m}$
- **130.** The increase in the width of the depletion region in a p-n junction diode is due to :
  - (1) both forward bias and reverse bias
  - (2) increase in forward current
  - (3) forward bias only
  - (4) reverse bias only
- 131. A 40  $\mu$ F capacitor is connected to a 200 V, 50 Hz ac supply. The rms value of the current in the circuit is, nearly :
  - (1)  $2.5 \,\mathrm{A}$
  - (2) 25.1 A
  - (3) 1.7 A
  - (4) 2.05 A
- 132. Taking into account of the significant figures, what is the value of 9.99 m 0.0099 m?
  - $(1) \quad 9.980 \text{ m}$
  - (2) 9.9 m
  - (3) 9.9801 m
  - (4) 9.98 m

- 133. A charged particle having drift velocity of  $7.5 \times 10^{-4}$  m s<sup>-1</sup> in an electric field of  $3 \times 10^{-10}$  Vm<sup>-1</sup>, has a mobility in m<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> of:
  - (1)  $2.5 \times 10^{-6}$
  - (2)  $2.25 \times 10^{-15}$
  - (3)  $2.25 \times 10^{15}$
  - (4)  $2.5 \times 10^6$
- 134. In a guitar, two strings A and B made of same material are slightly out of tune and produce beats of frequency 6 Hz. When tension in B is slightly decreased, the beat frequency increases to 7 Hz. If the frequency of A is 530 Hz, the original frequency of B will be :
  - $(1) \qquad 536\,\mathrm{Hz}$
  - (2) 537 Hz
  - $(3) \qquad 523\,\mathrm{Hz}$
  - $(4) \qquad 524\,\mathrm{Hz}$
- **135.** Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass.

The centre of mass of the system from the 5 kg particle is nearly at a distance of :

- (1) 67 cm
- (2) 80 cm
- (3) 33 cm
- (4) 50 cm
- **136.** Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as :
  - (1) Cross Cannizzaro's reaction
  - (2) Cross Aldol condensation
  - (3) Aldol condensation
  - (4) Cannizzaro's reaction
- **137.** Measuring Zeta potential is useful in determining which property of colloidal solution ?
  - (1) Stability of the colloidal particles
  - (2) Size of the colloidal particles
  - (3) Viscosity
  - (4) Solubility

- **138.** A tertiary butyl carbocation is more stable than a secondary butyl carbocation because of which of the following ?
  - (1) -R effect of  $-CH_3$  groups
  - (2) Hyperconjugation
  - (3)  $-I \text{ effect of } -CH_3 \text{ groups}$
  - (4)  $+ R \text{ effect of } CH_3 \text{ groups}$
- **139.** The correct option for free expansion of an ideal gas under adiabatic condition is :
  - (1)  $q < 0, \Delta T = 0 \text{ and } w = 0$
  - (2)  $q > 0, \Delta T > 0 \text{ and } w > 0$
  - (3)  $q = 0, \Delta T = 0 \text{ and } w = 0$
  - (4)  $q = 0, \Delta T < 0 \text{ and } w > 0$
- 140. Match the following :

~ • •

|     | Oxide     |       | Nature     |
|-----|-----------|-------|------------|
| (a) | CO        | (i)   | Basic      |
| (b) | BaO       | (ii)  | Neutral    |
| (c) | $Al_2O_3$ | (iii) | Acidic     |
| (d) | $Cl_2O_7$ | (iv)  | Amphoteric |
|     |           |       |            |

Which of the following is **correct** option?

|     | (a)   | (b)   | (c)   | (d)   |
|-----|-------|-------|-------|-------|
| (1) | (iii) | (iv)  | (i)   | (ii)  |
| (2) | (iv)  | (iii) | (ii)  | (i)   |
| (3) | (i)   | (ii)  | (iii) | (iv)  |
| (4) | (ii)  | (i)   | (iv)  | (iii) |

- **141.** Reaction between acetone and methylmagnesium chloride followed by hydrolysis will give :
  - (1) Tert. butyl alcohol
  - (2) Isobutyl alcohol
  - (3) Isopropyl alcohol
  - (4) Sec. butyl alcohol
- 142. The following metal ion activates many enzymes, participates in the oxidation of glucose to produce ATP and with Na, is responsible for the transmission of nerve signals.
  - (1) Calcium
  - (2) Potassium
  - (3) Iron
  - (4) Copper