- **86.** Which of the following is **not** an inhibitory substance governing seed dormancy?
 - (1) Phenolic acid
 - (2) Para-ascorbic acid
 - (3) Gibberellic acid
 - (4) Abscisic acid
- 87. Match the following columns and select the correct option.

Column - I

Column - II

- (a) Organ of Corti
- $\begin{array}{c} \hbox{(i)} & \quad \text{Connects middle} \\ & \quad \text{ear and pharynx} \end{array}$
- (b) Cochlea
- (ii) Coiled part of the labyrinth
- (c) Eustachian tube
- (iii) Attached to the oval window
- (d) Stapes
- (iv) Located on the basilar membrane
- (a) (b) (c) (d)
- (1) (iv) (ii) (i) (iii)
- (2) (i) (ii) (iv) (iii)
- (3) (ii) (iii) (i) (iv)
- $(4) \qquad (iii) \qquad (i) \qquad (iv) \qquad (ii)$
- **88.** The enzyme enterokinase helps in conversion of:
 - (1) caseinogen into casein
 - (2) pepsinogen into pepsin
 - (3) protein into polypeptides
 - (4) trypsinogen into trypsin
- **89.** Presence of which of the following conditions in urine are indicative of Diabetes Mellitus?
 - (1) Ketonuria and Glycosuria
 - (2) Renal calculi and Hyperglycaemia
 - (3) Uremia and Ketonuria
 - (4) Uremia and Renal Calculi
- **90.** The process responsible for facilitating loss of water in liquid form from the tip of grass blades at night and in early morning is:
 - (1) Imbibition
 - (2) Plasmolysis
 - (3) Transpiration
 - (4) Root pressure

91. A short electric dipole has a dipole moment of 16×10^{-9} C m. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole, situated on a line making an angle of 60° with the dipole axis is:

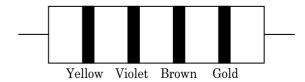
$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) 400 V
- (2) zero
- (3) 50 V
- (4) 200 V
- 92. A series LCR circuit is connected to an ac voltage source. When L is removed from the circuit, the phase difference between current and voltage is $\frac{\pi}{3}$. If instead C is removed from the circuit, the phase difference is again $\frac{\pi}{3}$ between current and voltage. The power factor of the circuit is:
 - (1) 1.0
 - (2) -1.0
 - (3) zero
 - (4) 0.5
- 93. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled?
 - (1) one-fourth
 - (2) zero
 - (3) doubled
 - (4) four times
- **94.** Dimensions of stress are:
 - (1) $[ML^0T^{-2}]$
 - (2) $[ML^{-1}T^{-2}]$
 - (3) $[MLT^{-2}]$
 - (4) $[ML^2T^{-2}]$
- 95. An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is 1.227×10^{-2} nm, the potential difference is:
 - (1) $10^3 \, \text{V}$
 - (2) $10^4 \, \text{V}$
 - (3) 10 V
 - (4) $10^2 \,\mathrm{V}$

96. The capacitance of a parallel plate capacitor with air as medium is 6 μF . With the introduction of a dielectric medium, the capacitance becomes 30 μF . The permittivity of the medium is:

$$(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2})$$

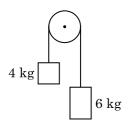
- (1) $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (2) $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (3) $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (4) $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- **97.** The solids which have the negative temperature coefficient of resistance are :
 - (1) semiconductors only
 - (2) insulators and semiconductors
 - (3) metals
 - (4) insulators only
- **98.** For transistor action, which of the following statements is **correct**?
 - (1) Both emitter junction as well as the collector junction are forward biased.
 - (2) The base region must be very thin and lightly doped.
 - (3) Base, emitter and collector regions should have same doping concentrations.
 - (4) Base, emitter and collector regions should have same size.
- **99.** A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale.


The pitch of the screw gauge is:

- (1) 0.5 mm
- (2) 1.0 mm
- (3) 0.01 mm
- (4) 0.25 mm
- **100.** The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:
 - (1) $\frac{\pi}{2}$ rad
 - (2) zero
 - (3) $\pi \operatorname{rad}$
 - (4) $\frac{3\pi}{2}$ rad

101. A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of the solenoid is:

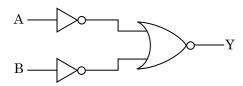
$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$


- (1) $6.28 \times 10^{-5} \,\mathrm{T}$
- (2) $3.14 \times 10^{-5} \,\mathrm{T}$
- (3) $6.28 \times 10^{-4} \,\mathrm{T}$
- (4) $3.14 \times 10^{-4} \,\mathrm{T}$
- 102. A ball is thrown vertically downward with a velocity of 20 m/s from the top of a tower. It hits the ground after some time with a velocity of 80 m/s. The height of the tower is: $(g=10 \text{ m/s}^2)$
 - (1) 320 m
 - (2) 300 m
 - (3) 360 m
 - (4) 340 m
- **103.** The color code of a resistance is given below:

The values of resistance and tolerance, respectively, are:

- (1) $4.7 \text{ k}\Omega, 5\%$
- (2) $470 \Omega, 5\%$
- (3) $470 \text{ k}\Omega, 5\%$
- (4) $47 \text{ k}\Omega, 10\%$
- **104.** The Brewsters angle i_b for an interface should be :
 - (1) $45^{\circ} < i_b < 90^{\circ}$
 - (2) $i_b = 90^{\circ}$
 - (3) $0^{\circ} < i_b < 30^{\circ}$
 - (4) $30^{\circ} < i_b < 45^{\circ}$
- 105. A ray is incident at an angle of incidence i on one surface of a small angle prism (with angle of prism A) and emerges normally from the opposite surface. If the refractive index of the material of the prism is μ , then the angle of incidence is nearly equal to:
 - (1) μA
 - (2) $\frac{\mu A}{2}$
 - (3) $\frac{A}{2\mu}$
 - (4) $\frac{2A}{\mu}$

- 106. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is:
 - (1) isochoric
 - (2) isobaric
 - (3) isothermal
 - (4) adiabatic
- **107.** For which one of the following, Bohr model is **not** valid?
 - (1) Deuteron atom
 - (2) Singly ionised neon atom (Ne⁺)
 - (3) Hydrogen atom
 - (4) Singly ionised helium atom (He⁺)
- 108. Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a pulley which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity (g) is:


- (1) g/5
- (2) g/10
- (3) g
- (4) g/2
- **109.** In a certain region of space with volume 0.2 m³, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is:
 - (1) 1 N/C
 - (2) 5 N/C
 - (3) zero
 - (4) 0.5 N/C

- 110. When a uranium isotope $^{235}_{92}\rm U$ is bombarded with a neutron, it generates $^{89}_{36}\rm Kr$, three neutrons and:
 - (1) $^{101}_{36}$ Kr
 - (2) $^{103}_{36}$ Kr
 - (3) $^{144}_{56}$ Ba
 - (4) ${}^{91}_{40}$ Zr
- 111. The energy equivalent of 0.5 g of a substance is:
 - (1) $1.5 \times 10^{13} \,\mathrm{J}$
 - (2) $0.5 \times 10^{13} \,\mathrm{J}$
 - (3) $4.5 \times 10^{16} \,\mathrm{J}$
 - (4) $4.5 \times 10^{13} \,\mathrm{J}$
- 112. The mean free path for a gas, with molecular diameter d and number density n can be expressed as:
 - $(1) \qquad \frac{1}{\sqrt{2} \, \operatorname{n}^2 \pi d^2}$
 - (2) $\sqrt{2} n^2 \pi^2 d^2$
 - (3) $\sqrt{2} n\pi d$
 - $(4) \qquad \frac{1}{\sqrt{2} \, \operatorname{n} \pi \mathrm{d}^2}$
- $\begin{array}{ll} \textbf{113.} & A \ wire \ of \ length \ L, \ area \ of \ cross \ section \ A \ is \ hanging \\ from \ a \ fixed \ support. & The \ length \ of \ the \ wire \\ changes \ to \ L_1 \ when \ mass \ M \ is \ suspended \ from \ its \\ free \ end. & The \ expression \ for \ Young's \ modulus \ is: \end{array}$
 - $(1) \qquad \frac{\text{MgL}}{\text{AL}_1}$
 - $(2) \qquad \frac{MgL}{A(L_1-L)}$
 - $(3) \qquad \frac{\mathrm{MgL}_{1}}{\mathrm{AL}}$
 - $(4) \qquad \frac{\mathrm{Mg}(\mathrm{L}_1 \mathrm{L})}{\mathrm{AL}}$
- 114. A spherical conductor of radius 10 cm has a charge of 3.2×10^{-7} C distributed uniformly. What is the magnitude of electric field at a point 15 cm from the centre of the sphere?

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

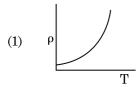
- (1) $1.28 \times 10^6 \text{ N/C}$
- (2) $1.28 \times 10^7 \text{ N/C}$
- (3) $1.28 \times 10^4 \text{ N/C}$
- (4) $1.28 \times 10^5 \text{ N/C}$

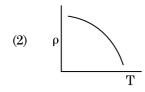
- 115. The energy required to break one bond in DNA is 10^{-20} J. This value in eV is nearly :
 - (1) 0.06
 - (2) 0.006
 - (3) 6
 - (4) 0.6
- **116.** A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth?
 - (1) 30 N
 - (2) 24 N
 - (3) 48 N
 - (4) 32 N
- 117. For the logic circuit shown, the truth table is:

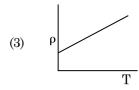
- (1) A B Y 0 0 1
 - 0 1 1
 - 1 0 1
- 1 1 0 (2) A B Y
 -) A B Y 0 0 1
 - 0 1 0
 - 1 0 0
 - 1 1 0
- (3) A B Y 0 0

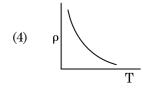
 - $egin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}$
 - 1 1 1
- (4) A B Y
 - 0 0 0
 - 0 1 1
 - 1 0 1
 - 1 1 1
- 118. In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes:
 - (1) four times
 - (2) one-fourth
 - (3) double
 - (4) half

- 119. A capillary tube of radius r is immersed in water and water rises in it to a height h. The mass of the water in the capillary is 5 g. Another capillary tube of radius 2r is immersed in water. The mass of water that will rise in this tube is:
 - (1) 10.0 g
 - (2) 20.0 g
 - (3) 2.5 g
 - (4) 5.0 g
- **120.** A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27°C.


Its density is : $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$


- (1) 0.1 kg/m^3
- (2) 0.02 kg/m^3
- (3) 0.5 kg/m^3
- (4) 0.2 kg/m^3
- 121. An iron rod of susceptibility 599 is subjected to a magnetising field of 1200 A m⁻¹. The permeability of the material of the rod is:


$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$


- (1) $2.4\pi \times 10^{-5} \text{ T m A}^{-1}$
- (2) $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- (3) $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$
- (4) $8.0 \times 10^{-5} \,\mathrm{T} \,\mathrm{m} \,\mathrm{A}^{-1}$
- 122. Find the torque about the origin when a force of 3j N acts on a particle whose position vector is 2k m.
 - (1) $-6\hat{i}$ N m
 - (2) $6\hat{k}$ N m
 - (3) $6\hat{i}$ N m
 - (4) $6\hat{j}$ N m
- $\begin{tabular}{ll} \textbf{123.} & The average thermal energy for a mono-atomic gas \\ is: (k_B is Boltzmann constant and T, absolute \\ temperature) \\ \end{tabular}$
 - $(1) \qquad \frac{5}{2} \, \, \mathbf{k_B T}$
 - $(2) \qquad \frac{7}{2} \, k_B T$
 - (3) $\frac{1}{2} k_B T$
 - $(4) \qquad \frac{3}{2} \, k_B T$

- 124. Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is:
 - (1) $7.32 \times 10^{-7} \, \text{rad}$
 - (2) $6.00 \times 10^{-7} \, \text{rad}$
 - (3) $3.66 \times 10^{-7} \, \text{rad}$
 - (4) $1.83 \times 10^{-7} \, \text{rad}$
- 125. Light with an average flux of 20 W/cm^2 falls on a non-reflecting surface at normal incidence having surface area 20 cm^2 . The energy received by the surface during time span of 1 minute is:
 - (1) $24 \times 10^3 \,\text{J}$
 - (2) $48 \times 10^3 \,\mathrm{J}$
 - (3) $10 \times 10^3 \,\mathrm{J}$
 - (4) $12 \times 10^3 \,\mathrm{J}$
- 126. The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is: (c = speed of electromagnetic waves)
 - (1) 1:c
 - (2) $1:c^2$
 - (3) c:1
 - (4) 1:1
- 127. Which of the following graph represents the variation of resistivity (ρ) with temperature (T) for copper?

- 128. The quantities of heat required to raise the temperature of two solid copper spheres of radii ${\bf r}_1$ and ${\bf r}_2$ (${\bf r}_1$ = 1.5 ${\bf r}_2$) through 1 K are in the ratio:
 - $(1) \qquad \frac{3}{2}$
 - (2) $\frac{5}{3}$
 - (3) $\frac{27}{8}$
 - (4) $\frac{9}{4}$
- 129. A resistance wire connected in the left gap of a metre bridge balances a 10 Ω resistance in the right gap at a point which divides the bridge wire in the ratio 3:2. If the length of the resistance wire is 1.5 m, then the length of 1 Ω of the resistance wire is:
 - (1) $1.5 \times 10^{-1} \,\mathrm{m}$
 - (2) $1.5 \times 10^{-2} \,\mathrm{m}$
 - (3) $1.0 \times 10^{-2} \,\mathrm{m}$
 - (4) $1.0 \times 10^{-1} \,\mathrm{m}$
- **130.** The increase in the width of the depletion region in a p-n junction diode is due to:
 - (1) both forward bias and reverse bias
 - (2) increase in forward current
 - (3) forward bias only
 - (4) reverse bias only
- 131. A 40 μF capacitor is connected to a 200 V, 50 Hz ac supply. The rms value of the current in the circuit is, nearly:
 - (1) 2.5 A
 - (2) 25.1 A
 - (3) 1.7 A
 - (4) 2.05 A
- 132. Taking into account of the significant figures, what is the value of 9.99 m 0.0099 m?
 - (1) 9.980 m
 - (2) 9.9 m
 - (3) 9.9801 m
 - (4) 9.98 m

16

- 133. A charged particle having drift velocity of 7.5×10^{-4} m s⁻¹ in an electric field of 3×10^{-10} Vm⁻¹, has a mobility in m² V⁻¹ s⁻¹ of:
 - (1) 2.5×10^{-6}
 - (2) 2.25×10^{-15}
 - (3) 2.25×10^{15}
 - (4) 2.5×10^6
- 134. In a guitar, two strings A and B made of same material are slightly out of tune and produce beats of frequency 6 Hz. When tension in B is slightly decreased, the beat frequency increases to 7 Hz. If the frequency of A is 530 Hz, the original frequency of B will be:
 - (1) 536 Hz
 - (2) 537 Hz
 - (3) 523 Hz
 - (4) 524 Hz
- 135. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass.

The centre of mass of the system from the 5 kg particle is nearly at a distance of:

- (1) 67 cm
- (2) 80 cm
- (3) 33 cm
- (4) 50 cm
- **136.** Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as:
 - (1) Cross Cannizzaro's reaction
 - (2) Cross Aldol condensation
 - (3) Aldol condensation
 - (4) Cannizzaro's reaction
- **137.** Measuring Zeta potential is useful in determining which property of colloidal solution?
 - (1) Stability of the colloidal particles
 - (2) Size of the colloidal particles
 - (3) Viscosity
 - (4) Solubility

- **138.** A tertiary butyl carbocation is more stable than a secondary butyl carbocation because of which of the following?
 - (1) -R effect of $-CH_3$ groups
 - (2) Hyperconjugation
 - (3) -I effect of $-CH_3$ groups
 - (4) + R effect of CH_3 groups
- **139.** The correct option for free expansion of an ideal gas under adiabatic condition is:
 - (1) $q < 0, \Delta T = 0 \text{ and } w = 0$
 - (2) $q > 0, \Delta T > 0 \text{ and } w > 0$
 - (3) $q = 0, \Delta T = 0 \text{ and } w = 0$
 - (4) $q = 0, \Delta T < 0 \text{ and } w > 0$
- **140.** Match the following:

	Oxide		Nature	
(a)	CO	(i)	Basic	
(b)	BaO	(ii)	Neutral	
(c)	$\mathrm{Al_2O_3}$	(iii)	Acidic	
(d)	$\mathrm{Cl_2O_7}$	(iv)	Amphoteric	

Which of the following is **correct** option?

	(a)	(b)	(c)	(d)
(1)	(iii)	(iv)	(i)	(ii)
(2)	(iv)	(iii)	(ii)	(i)
(3)	(i)	(ii)	(iii)	(iv)
(4)	(ii)	(i)	(iv)	(iii)

- **141.** Reaction between acetone and methylmagnesium chloride followed by hydrolysis will give:
 - (1) Tert. butyl alcohol
 - (2) Isobutyl alcohol
 - (3) Isopropyl alcohol
 - (4) Sec. butyl alcohol
- 142. The following metal ion activates many enzymes, participates in the oxidation of glucose to produce ATP and with Na, is responsible for the transmission of nerve signals.
 - (1) Calcium
 - (2) Potassium
 - (3) Iron
 - (4) Copper