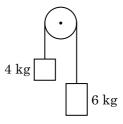
- **85.** Match the following with respect to meiosis:
 - (a) Zygotene
- (i) Terminalization
- (b) Pachytene
- (ii) Chiasmata
- (c) Diplotene
- (iii) Crossing over
- (d) Diakinesis
- (iv) Synapsis

(d)

(i)

(i)


Select the **correct** option from the following:

- (a)
- (b)
- **(c)**
- (1) (iv)
- (
- (iii) (ii)
- (2) (i)
- (ii)
- (iv) (iii)
- (3) (ii)
- (iv)
- (iii)
- (4) (iii)
- (iv)
- (i) (ii)
- **86.** According to Robert May, the global species diversity is about :
 - (1) 20 million
 - (2) 50 million
 - (3) 7 million
 - (4) 1.5 million
- 87. The ovary is half inferior in:
 - (1) Mustard
 - (2) Sunflower
 - (3) Plum
 - (4) Brinjal
- **88.** Select the **correct** statement.
 - (1) Glucagon is associated with hypoglycemia.
 - (2) Insulin acts on pancreatic cells and adipocytes.
 - (3) Insulin is associated with hyperglycemia.
 - (4) Glucocorticoids stimulate gluconeogenesis.
- 89. The process responsible for facilitating loss of water in liquid form from the tip of grass blades at night and in early morning is:
 - (1) Root pressure
 - (2) Imbibition
 - (3) Plasmolysis
 - (4) Transpiration

- **90.** Some dividing cells exit the cell cycle and enter vegetative inactive stage. This is called quiescent stage (G_0) . This process occurs at the end of:
 - (1) G_1 phase
 - (2) S phase
 - G_2 phase
 - (4) M phase
- **91.** The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:
 - (1) $\frac{3\pi}{2}$ rad
 - (2) $\frac{\pi}{2}$ rad
 - (3) zero
 - (4) $\pi \operatorname{rad}$
- **92.** A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of the solenoid is:

$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

- (1) $3.14 \times 10^{-4} \,\mathrm{T}$
- (2) $6.28 \times 10^{-5} \,\mathrm{T}$
- (3) $3.14 \times 10^{-5} \,\mathrm{T}$
- (4) $6.28 \times 10^{-4} \,\mathrm{T}$
- 93. Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a pulley which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity (g) is:

- (1) g/2
- (2) g/5
- (3) g/10
- (4) g
- 94. The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is: (c = speed of electromagnetic waves)
 - (1) 1:1
 - (2) 1:c
 - (3) $1:c^2$
 - (4) c: 1

- 95. In a certain region of space with volume $0.2~\text{m}^3$, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is :
 - (1) 0.5 N/C
 - (2) 1 N/C
 - (3) 5 N/C
 - (4) zero
- **96.** The average thermal energy for a mono-atomic gas is : $(k_B$ is Boltzmann constant and T, absolute temperature)
 - (1) $\frac{3}{2} k_B T$
 - $(2) \qquad \frac{5}{2} \, \, k_B T$
 - (3) $\frac{7}{2} k_{\rm B} T$
 - $(4) \qquad \frac{1}{2} \,\, k_B T$
- 97. Find the torque about the origin when a force of $3\hat{j}$ N acts on a particle whose position vector is $2\hat{k}$ m.
 - (1) 6j N m
 - (2) $-6\hat{i}$ N m
 - (3) $6\hat{k}$ N m
 - (4) 6i N m
- **98.** The mean free path for a gas, with molecular diameter d and number density n can be expressed as:
 - $(1) \qquad \frac{1}{\sqrt{2} \, n\pi d^2}$
 - $(2) \qquad \frac{1}{\sqrt{2} \, \operatorname{n}^2 \pi \operatorname{d}^2}$
 - (3) $\frac{1}{\sqrt{2} n^2 \pi^2 d^2}$
 - $(4) \qquad \frac{1}{\sqrt{2} \text{ n}\pi d}$
- **99.** The energy equivalent of 0.5 g of a substance is:
 - (1) $4.5 \times 10^{13} \,\mathrm{J}$
 - (2) $1.5 \times 10^{13} \,\mathrm{J}$
 - (3) $0.5 \times 10^{13} \,\mathrm{J}$
 - (4) $4.5 \times 10^{16} \,\mathrm{J}$

100. A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale.

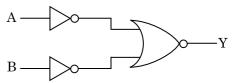
The pitch of the screw gauge is:

- (1) 0.25 mm
- (2) 0.5 mm
- (3) 1.0 mm
- (4) 0.01 mm
- 101. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is:
 - (1) adiabatic
 - (2) isochoric
 - (3) isobaric
 - (4) isothermal
- 102. A cylinder contains hydrogen gas at pressure of $249\,\mathrm{kPa}$ and temperature $27^\circ\mathrm{C}$.

Its density is : $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$

- (1) 0.2 kg/m^3
- (2) 0.1 kg/m^3
- (3) 0.02 kg/m^3
- (4) 0.5 kg/m^3
- 103. When a uranium isotope $^{235}_{92}{\rm U}$ is bombarded with a neutron, it generates $^{89}_{36}{\rm Kr}$, three neutrons and :
 - (1) $^{91}_{40}$ Zr
 - (2) ${}^{101}_{36}$ Kı
 - (3) $^{103}_{36}$ Kr
 - (4) $^{144}_{56}$ Ba
- 104. A charged particle having drift velocity of 7.5×10^{-4} m s⁻¹ in an electric field of 3×10^{-10} Vm⁻¹, has a mobility in m² V⁻¹ s⁻¹ of:
 - (1) 2.5×10^6
 - (2) 2.5×10^{-6}
 - (3) 2.25×10^{-15}
 - (4) 2.25×10^{15}
- **105.** Taking into account of the significant figures, what is the value of 9.99 m 0.0099 m?
 - (1) 9.98 m
 - (2) 9.980 m
 - (3) 9.9 m
 - (4) 9.9801 m

106. An iron rod of susceptibility 599 is subjected to a magnetising field of 1200 A m $^{-1}$. The permeability of the material of the rod is:


$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

- (1) $8.0 \times 10^{-5} \,\mathrm{T} \,\mathrm{m} \,\mathrm{A}^{-1}$
- (2) $2.4\pi \times 10^{-5} \text{ T m A}^{-1}$
- (3) $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- (4) $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$
- 107. A spherical conductor of radius 10 cm has a charge of 3.2×10^{-7} C distributed uniformly. What is the magnitude of electric field at a point 15 cm from the centre of the sphere?

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) $1.28 \times 10^5 \text{ N/C}$
- (2) $1.28 \times 10^6 \text{ N/C}$
- (3) $1.28 \times 10^7 \text{ N/C}$
- (4) $1.28 \times 10^4 \text{ N/C}$
- 108. A series LCR circuit is connected to an ac voltage source. When L is removed from the circuit, the phase difference between current and voltage is $\frac{\pi}{3}$. If instead C is removed from the circuit, the phase difference is again $\frac{\pi}{3}$ between current and voltage. The power factor of the circuit is:
 - (1) 0.5
 - (2) 1.0
 - (3) -1.0
 - (4) zero
- 109. A capillary tube of radius r is immersed in water and water rises in it to a height h. The mass of the water in the capillary is 5 g. Another capillary tube of radius 2r is immersed in water. The mass of water that will rise in this tube is:
 - (1) 5.0 g
 - (2) 10.0 g
 - (3) 20.0 g
 - (4) 2.5 g
- 110. In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes:
 - (1) half
 - (2) four times
 - (3) one-fourth
 - (4) double

111. For the logic circuit shown, the truth table is:

- (1) A B Y 0 0 0
 - 0 1 1
 - 1 1 1
- (2) A B Y 0 0 1
 - 0 1 1
 - $\begin{array}{cccc} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$
- (3) A B Y 0 0 1
 - $\begin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}$
 - 1 1 0
- (4) A B Y 0 0
 - 0 1 0
 - $\begin{array}{cccc} 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$
- 112. The color code of a resistance is given below:

The values of resistance and tolerance, respectively, are:

- (1) $47 \text{ k}\Omega, 10\%$
- (2) $4.7 \text{ k}\Omega, 5\%$
- (3) $470 \Omega, 5\%$
- $(4) \qquad 470 \; k\Omega, \, 5\%$
- 113. The capacitance of a parallel plate capacitor with air as medium is 6 μ F. With the introduction of a dielectric medium, the capacitance becomes 30 μ F. The permittivity of the medium is:

$$(\epsilon_0\!=\!8.85\!\times\!10^{-12}~\mathrm{C^2~N^{-1}~m^{-2}})$$

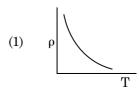
- (1) $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (2) $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (3) $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (4) $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$

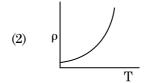
- 114. A ball is thrown vertically downward with a velocity of 20 m/s from the top of a tower. It hits the ground after some time with a velocity of 80 m/s. The height of the tower is: $(g = 10 \text{ m/s}^2)$
 - (1) 340 m
 - (2)320 m
 - (3) $300 \, \mathrm{m}$
 - (4)360 m
- 115. A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth?
 - 32 N (1)
 - (2)30 N
 - (3)24 N
 - (4) 48 N
- 116. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass.

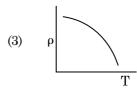
The centre of mass of the system from the 5 kg particle is nearly at a distance of:

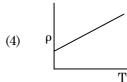
- (1) 50 cm
- (2)67 cm
- (3)80 cm
- 33 cm
- The increase in the width of the depletion region in a p-n junction diode is due to:
 - reverse bias only (1)
 - (2)both forward bias and reverse bias
 - increase in forward current (3)
 - forward bias only (4)
- 118. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled?
 - (1) four times
 - (2)one-fourth
 - (3)zero
 - (4) doubled
- Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is:
 - $1.83 \times 10^{-7} \, \text{rad}$ (1)
 - $7.32 \times 10^{-7} \, \text{rad}$ (2)
 - (3) $6.00 \times 10^{-7} \, \text{rad}$
 - $3.66 \times 10^{-7} \, \text{rad}$ (4)

- A resistance wire connected in the left gap of a metre bridge balances a 10 Ω resistance in the right gap at a point which divides the bridge wire in the ratio 3:2. If the length of the resistance wire is 1.5 m, then the length of 1 Ω of the resistance wire is:
 - $1.0 \times 10^{-1} \,\mathrm{m}$
 - $1.5 \times 10^{-1} \,\mathrm{m}$ (2)
 - $1.5 \times 10^{-2} \,\mathrm{m}$ (3)
 - $1.0 \times 10^{-2} \,\mathrm{m}$ (4)
- Light with an average flux of 20 W/cm² falls on a non-reflecting surface at normal incidence having surface area 20 cm². The energy received by the surface during time span of 1 minute is:
 - $12\times10^3\,\mathrm{J}$ (1)
 - $24 \times 10^3 \,\mathrm{J}$ (2)
 - $48 \times 10^3 \,\mathrm{J}$ (3)
 - $10 \times 10^3 \,\mathrm{J}$ (4)
- **122**. A ray is incident at an angle of incidence i on one surface of a small angle prism (with angle of prism A) and emerges normally from the opposite surface. If the refractive index of the material of the prism is μ , then the angle of incidence is nearly equal to:
 - 2A(1)
 - μΑ (2)
- A 40 µF capacitor is connected to a 200 V, 50 Hz ac supply. The rms value of the current in the circuit is, nearly:
 - $2.05\,\mathrm{A}$ (1)
 - (2) $2.5 \,\mathrm{A}$
 - (3) $25.1 \, A$
 - (4) $1.7\,\mathrm{A}$
- 124. Dimensions of stress are:
 - $[ML^2T^{-2}]$ (1)
 - $[ML^{0}T^{-2}]$ (2)
 - $[ML^{-1}T^{-2}]$ (3)
 - $[MLT^{-2}]$
- 125. The Brewsters angle \boldsymbol{i}_b for an interface should be :
 - $30^{\circ} < i_b < 45^{\circ}$
 - $45^{\circ} < i_b < 90^{\circ}$ (2)


 - $i_b = 90^{\circ}$ $0^{\circ} < i_b < 30^{\circ}$


- 126. A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire changes to L_1 when mass M is suspended from its free end. The expression for Young's modulus is:
 - $(1) \qquad \frac{\mathrm{Mg}(\mathrm{L}_1 \mathrm{L})}{\mathrm{AL}}$
 - (2) $\frac{\text{MgL}}{\text{AL}_1}$
 - $(3) \qquad \frac{\mathrm{MgL}}{\mathrm{A(L_1-L)}}$
 - $(4) \qquad \frac{\mathrm{MgL}_{1}}{\mathrm{AL}}$
- 127. A short electric dipole has a dipole moment of 16×10^{-9} C m. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole, situated on a line making an angle of 60° with the dipole axis is:


$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$


- (1) 200 V
- (2) 400 V
- (3) zero
- (4) 50 V
- 128. In a guitar, two strings A and B made of same material are slightly out of tune and produce beats of frequency 6 Hz. When tension in B is slightly decreased, the beat frequency increases to 7 Hz. If the frequency of A is 530 Hz, the original frequency of B will be:
 - (1) 524 Hz
 - (2) 536 Hz
 - (3) 537 Hz
 - (4) 523 Hz
- 129. An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is 1.227×10^{-2} nm, the potential difference is:
 - (1) $10^2 \, \text{V}$
 - (2) $10^3 \,\mathrm{V}$
 - (3) $10^4 \, \text{V}$
 - (4) 10 V

- **130.** The solids which have the negative temperature coefficient of resistance are :
 - (1) insulators only
 - (2) semiconductors only
 - (3) insulators and semiconductors
 - (4) metals
- 131. The energy required to break one bond in DNA is 10^{-20} J. This value in eV is nearly :
 - (1) 0.6
 - (2) 0.06
 - (3) 0.006
 - (4) 6
- 132. The quantities of heat required to raise the temperature of two solid copper spheres of radii ${\bf r}_1$ and ${\bf r}_2$ (${\bf r}_1$ = 1.5 ${\bf r}_2$) through 1 K are in the ratio:
 - (1) $\frac{9}{4}$
 - $(2) \qquad \frac{3}{2}$
 - $(3) \qquad \frac{5}{3}$
 - (4) $\frac{27}{8}$
- 133. Which of the following graph represents the variation of resistivity (ρ) with temperature (T) for copper?

- **134.** For transistor action, which of the following statements is **correct**?
 - (1) Base, emitter and collector regions should have same size.
 - (2) Both emitter junction as well as the collector junction are forward biased.
 - (3) The base region must be very thin and lightly doped.
 - (4) Base, emitter and collector regions should have same doping concentrations.
- **135.** For which one of the following, Bohr model is **not** valid?
 - (1) Singly ionised helium atom (He⁺)
 - (2) Deuteron atom
 - (3) Singly ionised neon atom (Ne⁺)
 - (4) Hydrogen atom
- **136.** What is the change in oxidation number of carbon in the following reaction?

$$CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(l) + 4HCl(g)$$

- (1) 0 to +4
- (2) -4 to +4
- (3) 0 to -4
- (4) + 4 to + 4
- **137.** On electrolysis of dil.sulphuric acid using Platinum (Pt) electrode, the product obtained at anode will be:
 - (1) Oxygen gas
 - (2) H_2S gas
 - (3) SO₂ gas
 - (4) Hydrogen gas
- **138.** An increase in the concentration of the reactants of a reaction leads to change in :
 - (1) heat of reaction
 - (2) threshold energy
 - (3) collision frequency
 - (4) activation energy

- **139.** Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as:
 - (1) Cannizzaro's reaction
 - (2) Cross Cannizzaro's reaction
 - (3) Cross Aldol condensation
 - (4) Aldol condensation
- **140.** Which of the following alkane cannot be made in good yield by Wurtz reaction?
 - (1) 2,3-Dimethylbutane
 - (2) n-Heptane
 - (3) n-Butane
 - (4) n-Hexane
- **141.** Which of the following is a natural polymer?
 - (1) poly (Butadiene-styrene)
 - (2) polybutadiene
 - (3) poly (Butadiene-acrylonitrile)
 - (4) *cis*-1,4-polyisoprene
- 142. A mixture of N_2 and Ar gases in a cylinder contains 7 g of N_2 and 8 g of Ar. If the total pressure of the mixture of the gases in the cylinder is 27 bar, the partial pressure of N_2 is:

[Use atomic masses (in g mol⁻¹): N = 14, Ar = 40]

- (1) 12 bar
- (2) 15 bar
- (3) 18 bar
- (4) 9 bar
- **143.** Match the following and identify the **correct** option.
 - (a) $CO(g) + H_2(g)$
- (i) $Mg(HCO_3)_2 + Ca(HCO_3)_2$
- (b) Temporary hardness of water
- (ii) An electron deficient hydride
- (c) B_2H_6
- (iii) Synthesis gas
- (d) H_2O_2
- (iv) Non-planar structure
- (a) (b) (c) (d)
- (1) (iii) (ii) (iv)
- (2) (iii) (iv) (ii) (i)
- (3) (i) (iii) (ii) (iv)
- (4) (iii) (i) (ii) (iv)