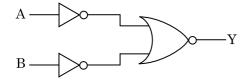
- **135.** Embryological support for evolution was disapproved by:
 - (1) Karl Ernst von Baer
 - (2) Alfred Wallace
 - (3) Charles Darwin
 - (4) Oparin
- **136.** The increase in the width of the depletion region in a p-n junction diode is due to:
 - (1) forward bias only
 - (2) reverse bias only
 - (3) both forward bias and reverse bias
 - (4) increase in forward current
- 137. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled?
 - (1) doubled
 - (2) four times
 - (3) one-fourth
 - (4) zero
- 138. A resistance wire connected in the left gap of a metre bridge balances a 10 Ω resistance in the right gap at a point which divides the bridge wire in the ratio 3:2. If the length of the resistance wire is 1.5 m, then the length of 1 Ω of the resistance wire is:
 - (1) $1.0 \times 10^{-2} \,\mathrm{m}$
 - (2) $1.0 \times 10^{-1} \,\mathrm{m}$
 - (3) $1.5 \times 10^{-1} \,\mathrm{m}$
 - (4) $1.5 \times 10^{-2} \,\mathrm{m}$
- 139. The energy required to break one bond in DNA is 10^{-20} J. This value in eV is nearly :
 - (1) 6
 - (2) 0.6
 - (3) 0.06
 - (4) 0.006

- **140.** The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:
 - (1) π rad
 - (2) $\frac{3\pi}{2}$ rad
 - (3) $\frac{\pi}{2}$ rad
 - (4) zero
- 141. A ball is thrown vertically downward with a velocity of 20 m/s from the top of a tower. It hits the ground after some time with a velocity of 80 m/s. The height of the tower is: $(g = 10 \text{ m/s}^2)$
 - (1) 360 m
 - (2) 340 m
 - (3) 320 m
 - (4) 300 m
- 142. A short electric dipole has a dipole moment of 16×10^{-9} C m. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole, situated on a line making an angle of 60° with the dipole axis is:

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) 50 V
- (2) 200 V
- (3) 400 V
- (4) zero
- 143. An iron rod of susceptibility 599 is subjected to a magnetising field of 1200 A m⁻¹. The permeability of the material of the rod is:


$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

- (1) $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$
- (2) $8.0 \times 10^{-5} \,\mathrm{T} \,\mathrm{m} \,\mathrm{A}^{-1}$
- (3) $2.4\pi \times 10^{-5} \text{ T m A}^{-1}$
- (4) $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- 144. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is:
 - (1) isothermal
 - (2) adiabatic
 - (3) isochoric
 - (4) isobaric

145. A spherical conductor of radius 10 cm has a charge of 3.2×10^{-7} C distributed uniformly. What is the magnitude of electric field at a point 15 cm from the centre of the sphere?

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) $1.28 \times 10^4 \text{ N/C}$
- (2) $1.28 \times 10^5 \text{ N/C}$
- (3) $1.28 \times 10^6 \text{ N/C}$
- (4) $1.28 \times 10^7 \text{ N/C}$
- **146.** The mean free path for a gas, with molecular diameter d and number density n can be expressed as:
 - $(1) \qquad \frac{1}{\sqrt{2} \, n\pi d}$
 - $(2) \qquad \frac{1}{\sqrt{2} \, \operatorname{n} \pi \mathrm{d}^2}$
 - $(3) \qquad \frac{1}{\sqrt{2} \, \operatorname{n}^2 \pi \operatorname{d}^2}$
 - (4) $\frac{1}{\sqrt{2} n^2 \pi^2 d^2}$
- 147. For the logic circuit shown, the truth table is:

- (1) A B Y 0 0 0 0 0 1 0
 - 1 0 0
- 1 1 1 (2) A B Y
 - 0 0 0
 - $\begin{array}{cccc} 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}$
 - $\begin{array}{ccccc} 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$
- (3) A B Y 0 0 1
 - $egin{array}{ccc} 0 & 0 \\ 0 & 1 \end{array}$
 - $egin{array}{cccc} 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}$
 - 1 1 0
- (4) A B Y
 - 0 0 1
 - $egin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}$
 - $1 \quad 0 \quad 0$ $1 \quad 1 \quad 0$

- **148.** The energy equivalent of 0.5 g of a substance is:
 - (1) $4.5 \times 10^{16} \,\mathrm{J}$
 - (2) $4.5 \times 10^{13} \,\mathrm{J}$
 - (3) $1.5 \times 10^{13} \,\mathrm{J}$
 - (4) $0.5 \times 10^{13} \,\mathrm{J}$
- **149.** Light with an average flux of 20 W/cm² falls on a non-reflecting surface at normal incidence having surface area 20 cm². The energy received by the surface during time span of 1 minute is:
 - (1) $10 \times 10^3 \,\mathrm{J}$
 - (2) $12 \times 10^3 \,\mathrm{J}$
 - (3) $24 \times 10^3 \,\text{J}$
 - (4) $48 \times 10^3 \,\mathrm{J}$
- 150. A ray is incident at an angle of incidence i on one surface of a small angle prism (with angle of prism A) and emerges normally from the opposite surface. If the refractive index of the material of the prism is μ , then the angle of incidence is nearly equal to:
 - $(1) \qquad \frac{A}{2\mu}$
 - (2) $\frac{2A}{\mu}$
 - (3) μA
 - $(4) \qquad \frac{\mu A}{2}$
- **151.** The solids which have the negative temperature coefficient of resistance are :
 - (1) metals
 - (2) insulators only
 - (3) semiconductors only
 - (4) insulators and semiconductors
- 152. When a uranium isotope $^{235}_{92}{\rm U}$ is bombarded with a neutron, it generates $^{89}_{36}{\rm Kr}$, three neutrons and:
 - (1) $^{144}_{56}$ Ba
 - (2) $^{91}_{40}$ Zr
 - (3) $^{101}_{36}$ Kr
 - (4) $^{103}_{36}$ Kr

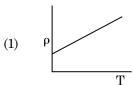
- 153. A capillary tube of radius r is immersed in water and water rises in it to a height h. The mass of the water in the capillary is 5 g. Another capillary tube of radius 2r is immersed in water. The mass of water that will rise in this tube is:
 - (1) 2.5 g
 - (2) 5.0 g
 - (3) 10.0 g
 - (4) 20.0 g
- 154. In a certain region of space with volume $0.2~\text{m}^3$, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is :
 - (1) zero
 - (2) 0.5 N/C
 - (3) 1 N/C
 - (4) 5 N/C
- **155.** A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of the solenoid is:

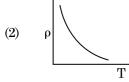
$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

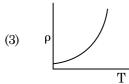
- (1) $6.28 \times 10^{-4} \,\mathrm{T}$
- (2) $3.14 \times 10^{-4} \,\mathrm{T}$
- (3) $6.28 \times 10^{-5} \,\mathrm{T}$
- (4) $3.14 \times 10^{-5} \,\mathrm{T}$
- **156.** Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is:
 - (1) $3.66 \times 10^{-7} \, \text{rad}$
 - (2) $1.83 \times 10^{-7} \, \text{rad}$
 - (3) $7.32 \times 10^{-7} \, \text{rad}$
 - (4) $6.00 \times 10^{-7} \, \text{rad}$
- 157. An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is 1.227×10^{-2} nm, the potential difference is:
 - $(1) \qquad 10\,\mathrm{V}$
 - (2) $10^2 \,\mathrm{V}$
 - (3) $10^3 \,\mathrm{V}$
 - (4) $10^4 \,\mathrm{V}$
- **158.** Dimensions of stress are:
 - (1) $[MLT^{-2}]$
 - (2) $[ML^2T^{-2}]$
 - (3) $[ML^0T^{-2}]$
 - (4) $[ML^{-1}T^{-2}]$

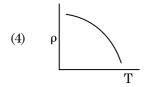
159. The capacitance of a parallel plate capacitor with air as medium is $6 \, \mu F$. With the introduction of a dielectric medium, the capacitance becomes $30 \, \mu F$. The permittivity of the medium is :

$$(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2})$$

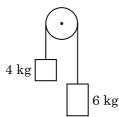

- (1) $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (2) $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (3) $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (4) $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- 160. The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is: (c = speed of electromagnetic waves)
 - (1) c:1
 - (2) 1:1
 - (3) 1:c
 - (4) $1:c^2$
- **161.** For which one of the following, Bohr model is **not** valid?
 - (1) Hydrogen atom
 - (2) Singly ionised helium atom (He⁺)
 - (3) Deuteron atom
 - (4) Singly ionised neon atom (Ne +)
- **162.** A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27°C.


Its density is : $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$


- (1) 0.5 kg/m^3
- (2) 0.2 kg/m^3
- (3) 0.1 kg/m^3
- (4) 0.02 kg/m^3
- **163.** For transistor action, which of the following statements is **correct**?
 - (1) Base, emitter and collector regions should have same doping concentrations.
 - (2) Base, emitter and collector regions should have same size.
 - (3) Both emitter junction as well as the collector junction are forward biased.
 - (4) The base region must be very thin and lightly doped.


- 164. The Brewsters angle i_h for an interface should be :
 - $0^{\circ} < i_b < 30^{\circ}$
 - $30^{\circ} < i_b < 45^{\circ}$ $45^{\circ} < i_b < 90^{\circ}$ (2)
 - (3)
- The average thermal energy for a mono-atomic gas 165. is : $(k_B \text{ is Boltzmann constant and } T, \text{ absolute}$ temperature)
 - (1)

 - (3)
- 166. Taking into account of the significant figures, what is the value of 9.99 m - 0.0099 m?
 - 9.9801 m (1)
 - (2) $9.98 \, \text{m}$
 - (3) $9.980 \, \text{m}$
 - (4)9.9 m
- A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale.
 - The pitch of the screw gauge is:
 - $0.01 \, \text{mm}$ (1)
 - (2) $0.25 \, \mathrm{mm}$
 - (3)0.5 mm
 - (4) 1.0 mm
- Which of the following graph represents the variation of resistivity (ρ) with temperature (T) for copper?



- 169. Find the torque about the origin when a force of $3\hat{j}$ N acts on a particle whose position vector is $2\stackrel{\circ}{k}$ m .
 - $6\hat{i}$ N m (1)
 - $6\hat{i}$ N m (2)
 - $-6\hat{i}$ N m
 - $6\hat{k}$ N m (4)
- 170. A series LCR circuit is connected to an ac voltage source. When L is removed from the circuit, the phase difference between current and voltage . If instead C is removed from the circuit, the phase difference is again $\frac{\pi}{3}$ between current and voltage. The power factor of the circuit is:
 - (1) zero
 - (2)0.5
 - (3)1.0
 - (4) -1.0
- Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a pulley which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity (g) is:

- (1)
- (2)g/2
- (3)g/5
- g/10
- The quantities of heat required to raise the temperature of two solid copper spheres of radii r_1 and r_2 $(r_1 = 1.5 r_2)$ through 1 K are in the ratio:
 - (1)
 - (2)
 - (3)
 - (4)

- 173. A 40 μF capacitor is connected to a 200 V, 50 Hz ac supply. The rms value of the current in the circuit is, nearly:
 - (1) 1.7 A
 - (2) 2.05 A
 - (3) 2.5 A
 - (4) 25.1 A
- **174.** A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth?
 - (1) 48 N
 - (2) 32 N
 - (3) 30 N
 - (4) 24 N
- 175. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass.

The centre of mass of the system from the 5 kg particle is nearly at a distance of:

- (1) 33 cm
- (2) 50 cm
- (3) 67 cm
- (4) 80 cm
- **176.** In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes:
 - (1) double
 - (2) half
 - (3) four times
 - (4) one-fourth
- 177. A charged particle having drift velocity of 7.5×10^{-4} m s⁻¹ in an electric field of 3×10^{-10} Vm⁻¹, has a mobility in m² V⁻¹ s⁻¹ of:
 - (1) 2.25×10^{15}
 - (2) 2.5×10^6
 - (3) 2.5×10^{-6}
 - (4) 2.25×10^{-15}

178. The color code of a resistance is given below:

The values of resistance and tolerance, respectively, are:

- (1) $470 \text{ k}\Omega, 5\%$
- (2) $47 \text{ k}\Omega, 10\%$
- (3) $4.7 \text{ k}\Omega, 5\%$
- (4) $470 \Omega, 5\%$
- 179. A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire changes to L_1 when mass M is suspended from its free end. The expression for Young's modulus is:
 - $(1) \qquad \frac{MgL_1}{AL}$
 - $(2) \qquad \frac{Mg(L_1-L)}{AL}$
 - $(3) \qquad \frac{MgL}{AL_1}$
 - $(4) \qquad \frac{MgL}{A(L_1-L)}$
- 180. In a guitar, two strings A and B made of same material are slightly out of tune and produce beats of frequency 6 Hz. When tension in B is slightly decreased, the beat frequency increases to 7 Hz. If the frequency of A is 530 Hz, the original frequency of B will be:
 - (1) 523 Hz
 - (2) 524 Hz
 - (3) 536 Hz
 - (4) 537 Hz