F2

- **95.** Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as :
 - (1) Cross Cannizzaro's reaction
 - (2) Cross Aldol condensation
 - (3) Aldol condensation
 - (4) Cannizzaro's reaction
- **96.** Which one of the followings has maximum number of atoms ?
 - (1) $1 \operatorname{g} \operatorname{of} O_2(g)$ [Atomic mass of O = 16]
 - (2) 1 g of Li(s) [Atomic mass of Li = 7]
 - (3) $1 \operatorname{g} \operatorname{of} \operatorname{Ag}(s)$ [Atomic mass of Ag = 108]
 - (4) 1 g of Mg(s) [Atomic mass of Mg = 24]
- 97. Anisole on cleavage with HI gives :

98. Which of the following amine will give the carbylamine test?

99. Identify the **incorrect** statement.

- (1) Interstitial compounds are those that are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals.
- (2) The oxidation states of chromium in CrO_4^{2-}

and $Cr_2O_7^{2-}$ are not the same.

- (3) $Cr^{2+}(d^4)$ is a stronger reducing agent than $Fe^{2+}(d^6)$ in water.
- (4) The transition metals and their compounds are known for their catalytic activity due to their ability to adopt multiple oxidation states and to form complexes.
- 100. Which of the following is a basic amino acid?
 - (1) Tyrosine
 - (2) Lysine
 - (3) Serine
 - (4) Alanine

- **101.** Which of the following is a natural polymer?
 - (1)polybutadiene
 - (2)poly (Butadiene-acrylonitrile)
 - (3)cis-1,4-polyisoprene
 - (4)poly (Butadiene-styrene)
- 102. Match the following and identify the correct option.

(a)	$CO(g) + H_2(g)$			(i)	$Mg(HCO_3)_2 +$
					$Ca(HCO_3)_2$
(b)	Temporary hardness of water			(ii)	An electron deficient hydride
(c)	B_2H_0	6		(iii)	Synthesis gas
(d)	H_2O_2			(iv)	Non-planar structure
	(a)	(b)	(c)	(d)	
(1)	(iii)	(iv)	(ii)	(i)	
(2)	(i)	(iii)	(ii)	(iv)	
(3)	(iii)	(i)	(ii)	(iv)	
(4)	(iii)	(ii)	(i)	(iv)	

103. An alkene on ozonolysis gives methanal as one of the product. Its structure is :

- - The rate constant for a first order reaction is 104. 4.606×10^{-3} s⁻¹. The time required to reduce 2.0 g of the reactant to 0.2 g is :
 - (1) $500\,\mathrm{s}$
 - (2) $1000 \mathrm{\ s}$
 - (3) $100 \mathrm{s}$
 - $200 \mathrm{s}$ (4)
 - On electrolysis of dil.sulphuric acid using 105. Platinum (Pt) electrode, the product obtained at anode will be :
 - (1) H_2Sgas
 - (2) SO_2 gas
 - (3)Hydrogen gas
 - (4)Oxygen gas
 - 106. An element has a body centered cubic (bcc) structure with a cell edge of 288 pm. The atomic radius is :

(1)
$$\frac{4}{\sqrt{3}} \times 288 \text{ pm}$$

(2) $\frac{4}{\sqrt{2}} \times 288 \text{ pm}$
(3) $\frac{\sqrt{3}}{4} \times 288 \text{ pm}$
(4) $\frac{\sqrt{2}}{4} \times 288 \text{ pm}$

- **107.** Sucrose on hydrolysis gives :
 - (1) α -D-Glucose + β -D-Fructose
 - (2) α -D-Fructose + β -D-Fructose
 - (3) β -D-Glucose + α -D-Fructose
 - α -D-Glucose + β -D-Glucose (4)
- 108. Which of the following is **not** correct about carbon monoxide?
 - (1)The carboxyhaemoglobin (haemoglobin bound to CO) is less stable than oxyhaemoglobin.
 - (2)It is produced due to incomplete combustion.
 - (3)It forms carboxyhaemoglobin.
 - (4)It reduces oxygen carrying ability of blood.

F2

- 14
- 109. The mixture which shows positive deviation from Raoult's law is :
 - Acetone + Chloroform (1)
 - (2)Chloroethane + Bromoethane
 - (3)Ethanol+Acetone
 - (4)Benzene + Toluene
- 110. Identify compound X in the following sequence of reactions:

 CCl_3 (2)

- The freezing point depression constant $(\mathrm{K}_{\mathrm{f}})$ of 111. benzene is $5.12 \text{ K kg mol}^{-1}$. The freezing point depression for the solution of molality 0.078 m containing a non-electrolyte solute in benzene is (rounded off up to two decimal places):
 - (1)0.40 K
 - 0.60 K (2)
 - (3) $0.20\,\mathrm{K}$
 - (4) $0.80\,\mathrm{K}$
- Which of the following is a cationic detergent? 112.
 - Cetyltrimethyl ammonium bromide (1)
 - (2)Sodium dodecylbenzene sulphonate
 - (3)Sodium lauryl sulphate
 - (4)Sodium stearate
- Paper chromatography is an example of : 113.
 - (1)Thin layer chromatography
 - (2)Column chromatography
 - (3)Adsorption chromatography
 - (4)Partition chromatography
- 114. Identify the correct statement from the following:
 - (1)Vapour phase refining is carried out for Nickel by Van Arkel method.
 - (2)Pig iron can be moulded into a variety of shapes.
 - (3)Wrought iron is impure iron with 4% carbon.
 - Blister copper has blistered appearance due (4)to evolution of CO₂.
- 115. What is the change in oxidation number of carbon in the following reaction?

 $CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(l) + 4HCl(g)$

- (1)-4 to +4
- (2)0 to -4
- +4 to +4(3)
- (4)0 to + 4

- **116.** Elimination reaction of 2-Bromo-pentane to form pent-2-ene is :
 - (a) β -Elimination reaction
 - (b) Follows Zaitsev rule
 - (c) Dehydrohalogenation reaction
 - (d) Dehydration reaction
 - (1) (b), (c), (d)
 - (2) (a), (b), (d)
 - (3) (a), (b), (c)
 - (4) (a), (c), (d)
- **117.** Hydrolysis of sucrose is given by the following reaction.

 $Sucrose + H_2O \rightleftharpoons Glucose + Fructose$

If the equilibrium constant (K_c) is 2×10^{13} at 300 K, the value of $\Delta_r G^{\odot}$ at the same temperature will be :

- (1) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(3 \times 10^{13})$
- (2) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(4 \times 10^{13})$
- (3) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (4) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- **118.** Match the following :

	Oxide	е		Nature			
(a)	CO		(i)	Basic			
(b)	BaO		(ii)	Neutral			
(c)	Al_2O_3		(iii)	Acidic			
(d)	Cl_2O_7		(iv)	Amphoteric			
Which of the following is $correct$ option ?							
	(a)	(b)	(c)	(d)			
(1)	(iii)	(iv)	(i)	(ii)			
(2)	(iv)	(iii)	(ii)	(i)			
(3)	(i)	(ii)	(iii)	(iv)			
(4)	(ii)	(i)	(iv)	(iii)			

- 119. Identify a molecule which does not exist.
 - (1) C₂
 - $(2) \quad O_2$
 - (3) He₂
 - (4) Li₂
- 120. The number of Faradays(F) required to produce 20 g of calcium from molten $CaCl_2$ (Atomic mass of Ca = 40 g mol⁻¹) is :
 - (1) 3
 - (2) 4
 - (3) 1
 - (4) 2

- 121. Urea reacts with water to form A which will decompose to form B. B when passed through Cu^{2+} (aq), deep blue colour solution C is formed. What is the formula of C from the following?
 - (1) $Cu(OH)_2$
 - (2) $CuCO_3 \cdot Cu(OH)_2$
 - (3) CuSO₄
 - (4) $[Cu(NH_3)_4]^{2+}$
- **122.** Reaction between acetone and methylmagnesium chloride followed by hydrolysis will give :
 - (1) Tert. butyl alcohol
 - (2) Isobutyl alcohol
 - (3) Isopropyl alcohol
 - (4) Sec. butyl alcohol
- **123.** The number of protons, neutrons and electrons in ${}^{175}_{71}$ Lu, respectively, are :
 - (1) 71, 71 and 104
 - (2) 175, 104 and 71
 - (3) 71, 104 and 71
 - (4) 104, 71 and 71
- **124.** Which of the following alkane cannot be made in good yield by Wurtz reaction ?
 - (1) n-Heptane
 - (2) n-Butane
 - (3) n-Hexane
 - (4) 2,3-Dimethylbutane
- **125.** HCl was passed through a solution of CaCl₂, MgCl₂ and NaCl. Which of the following compound(s) crystallise(s)?
 - (1) $Only MgCl_2$
 - (2) NaCl, $MgCl_2$ and $CaCl_2$
 - (3) Both $MgCl_2$ and $CaCl_2$
 - (4) Only NaCl
- **126.** Measuring Zeta potential is useful in determining which property of colloidal solution ?
 - (1) Stability of the colloidal particles
 - (2) Size of the colloidal particles
 - (3) Viscosity
 - (4) Solubility

F2

- 127. Find out the solubility of $Ni(OH)_2$ in 0.1 M NaOH. Given that the ionic product of $Ni(OH)_2$ is 2×10^{-15} .
 - (1) $1 \times 10^{-13} \,\mathrm{M}$
 - (2) $1 \times 10^8 \,\mathrm{M}$
 - (3) $2 \times 10^{-13} \,\mathrm{M}$
 - (4) $2 \times 10^{-8} \,\mathrm{M}$
- 128. For the reaction, $2Cl(g) \rightarrow Cl_2(g)$, the correct option is :
 - (1) $\Delta_r H < 0 \text{ and } \Delta_r S > 0$
 - (2) $\Delta_r H < 0 \text{ and } \Delta_r S < 0$
 - (3) $\Delta_r H > 0 \text{ and } \Delta_r S > 0$
 - (4) $\Delta_r H > 0$ and $\Delta_r S < 0$
- 129. The calculated spin only magnetic moment of ${\rm Cr}^{2\,+}$ ion is :
 - $(1) \qquad 5.92\,BM$
 - (2) 2.84 BM
 - (3) 3.87 BM
 - (4) 4.90 BM
- **130.** Identify the **correct** statements from the following:
 - (a) $\operatorname{CO}_2(g)$ is used as refrigerant for ice-cream and frozen food.
 - (b) The structure of C_{60} contains twelve six carbon rings and twenty five carbon rings.
 - (c) ZSM-5, a type of zeolite, is used to convert alcohols into gasoline.
 - (d) CO is colorless and odourless gas.
 - (1) (b) and (c) only
 - (2) (c) and (d) only
 - (3) (a), (b) and (c) only
 - (4) (a) and (c) only
- 131. The following metal ion activates many enzymes, participates in the oxidation of glucose to produce ATP and with Na, is responsible for the transmission of nerve signals.
 - (1) Calcium
 - (2) Potassium
 - (3) Iron
 - (4) Copper

- **132.** Which of the following set of molecules will have zero dipole moment ?
 - (1) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene
 - (2) Boron trifluoride, beryllium difluoride, carbon dioxide, 1,4-dichlorobenzene
 - (3) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene
 - (4) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
- **133.** The correct option for free expansion of an ideal gas under adiabatic condition is :
 - (1) $q < 0, \Delta T = 0 \text{ and } w = 0$
 - (2) $q > 0, \Delta T > 0 \text{ and } w > 0$
 - (3) $q = 0, \Delta T = 0 \text{ and } w = 0$
 - (4) $q = 0, \Delta T < 0 \text{ and } w > 0$
- **134.** Which of the following is the **correct** order of increasing field strength of ligands to form coordination compounds?
 - (1) $F^- < SCN^- < C_2O_4^{2-} < CN^-$
 - (2) $CN^- < C_2 O_4^{2-} < SCN^- < F^-$
 - (3) $SCN^- < F^- < C_2O_4^{2-} < CN^-$
 - (4) $SCN^- < F^- < CN^- < C_2O_4^{2-}$
- **135.** A tertiary butyl carbocation is more stable than a secondary butyl carbocation because of which of the following ?
 - (1) -R effect of $-CH_3$ groups
 - (2) Hyperconjugation
 - (3) $-I \text{ effect of } -CH_3 \text{ groups}$
 - (4) + R effect of CH_3 groups