- - (1) water currents only
 - (2) wind and water
 - (3) insects and water
 - (4) insects or wind
- 2. Choose the **correct** pair from the following:
 - (1) Polymerases Break the DNA into fragments
 - (2) Nucleases Separate the two strands of DNA
 - (3) Exonucleases Make cuts at specific positions within DNA
 - (4) Ligases Join the two DNA molecules
- **3.** Snow-blindness in Antarctic region is due to:
 - (1) Inflammation of cornea due to high dose of UV-B radiation
 - (2) High reflection of light from snow
 - (3) Damage to retina caused by infra-red rays
 - (4) Freezing of fluids in the eye by low temperature
- **4.** Meiotic division of the secondary oocyte is completed:
 - (1) At the time of copulation
 - (2) After zygote formation
 - (3) At the time of fusion of a sperm with an ovum
 - (4) Prior to ovulation
- 5. Match the following columns and select the correct option.

	Colu	ımn -	I		Column - II					
(a)	Floa	Floating Ribs		(i)	Located between					
					second and					
					seventh ribs					
(b)	Acro	mion		(ii)	Head of the					
					Humerus					
(c)	Scap	ula		(iii)	Clavicle					
(d)	Glen	oid cav	vity	(iv)	Do not connect					
					with the sternum					
	(a)	(b)	(c)	(d)						
(1)	(i)	(iii)	(ii)	(iv)						
(2)	(iii)	(ii)	(iv)	(i)						
(3)	(iv)	(iii)	(i)	(ii)						
(4)	(ii)	(iv)	(i)	(iii)						

- 6. Which of the following pairs is of unicellular algae?
 - (1) Gelidium and Gracilaria
 - (2) Anabaena and Volvox
 - (3) Chlorella and Spirulina
 - (4) Laminaria and Sargassum
 - 7. Dissolution of the synaptonemal complex occurs during:
 - (1) Zygotene
 - (2) Diplotene
 - (3) Leptotene
 - (4) Pachytene
 - **8.** If the head of cockroach is removed, it may live for few days because:
 - (1) the cockroach does not have nervous system.
 - (2) the head holds a small proportion of a nervous system while the rest is situated along the ventral part of its body.
 - (3) the head holds a 1/3rd of a nervous system while the rest is situated along the dorsal part of its body.
 - (4) the supra-oesophageal ganglia of the cockroach are situated in ventral part of abdomen.
 - **9.** Which of the following refer to **correct** example(s) of organisms which have evolved due to changes in environment brought about by anthropogenic action?
 - (a) Darwin's Finches of Galapagos islands.
 - (b) Herbicide resistant weeds.
 - (c) Drug resistant eukaryotes.
 - (d) Man-created breeds of domesticated animals like dogs.
 - (1) (a) and (c)
 - (2) (b), (c) and (d)
 - (3) only (d)
 - (4) only (a)
 - **10.** Identify the **wrong** statement with reference to transport of oxygen.
 - $\begin{array}{c} \text{(1)} & \text{Partial pressure of CO}_2\,\text{can interfere with} \\ & \text{O}_2\,\text{binding with haemoglobin.} \end{array}$
 - (2) Higher H^+ conc. in alveoli favours the formation of oxyhaemoglobin.
 - (3) Low pCO_2 in alveoli favours the formation of oxyhaemoglobin.
 - (4) Binding of oxygen with haemoglobin is mainly related to partial pressure of O_2 .

- **11.** Montreal protocol was signed in 1987 for control of :
 - (1) Emission of ozone depleting substances
 - (2) Release of Green House gases
 - (3) Disposal of e-wastes
 - (4) Transport of Genetically modified organisms from one country to another
- **12.** Which of the following is **correct** about viroids?
 - (1) They have free RNA without protein coat.
 - (2) They have DNA with protein coat.
 - (3) They have free DNA without protein coat.
 - (4) They have RNA with protein coat.
- 13. Select the **correct** statement.
 - (1) Glucagon is associated with hypoglycemia.
 - (2) Insulin acts on pancreatic cells and adipocytes.
 - (3) Insulin is associated with hyperglycemia.
 - (4) Glucocorticoids stimulate gluconeogenesis.
- **14.** Which of the following is **not** an inhibitory substance governing seed dormancy?
 - (1) Abscisic acid
 - (2) Phenolic acid
 - (3) Para-ascorbic acid
 - (4) Gibberellic acid
- **15.** The infectious stage of *Plasmodium* that enters the human body is:
 - (1) Sporozoites
 - (2) Female gametocytes
 - (3) Male gametocytes
 - (4) Trophozoites

- **16.** In which of the following techniques, the embryos are transferred to assist those females who cannot conceive?
 - (1) GIFT and ZIFT
 - (2) ICSI and ZIFT
 - (3) GIFT and ICSI
 - (4) ZIFT and IUT
- **17.** Experimental verification of the chromosomal theory of inheritance was done by :
 - (1) Sutton

3

- (2) Boveri
- (3) Morgan
- (4) Mendel
- **18.** Identify the **wrong** statement with reference to immunity.
 - (1) When ready-made antibodies are directly given, it is called "Passive immunity".
 - (2) Active immunity is quick and gives full response.
 - (3) Foetus receives some antibodies from mother, it is an example for passive immunity.
 - (4) When exposed to antigen (living or dead) antibodies are produced in the host's body. It is called "Active immunity".
- **19.** The product(s) of reaction catalyzed by nitrogenase in root nodules of leguminous plants is/are:
 - (1) Nitrate alone
 - (2) Ammonia and oxygen
 - (3) Ammonia and hydrogen
 - (4) Ammonia alone
- **20.** Match the trophic levels with their **correct** species examples in grassland ecosystem.
 - (a) Fourth trophic level
- (i) Crow
- (b) Second trophic level
- (ii) Vulture
- (c) First trophic level
- (iii) Rabbit
- (d) Third trophic level
- (iv) Grass

Select the **correct** option:

- (a) (b) (c) (d) 1) (iii) (ii) (i) (iv)
- (1) (iii) (ii) (i) (iv (2) (iv) (iii) (ii) (i)
- (3) (i) (ii) (iii) (iv)
- (4) (ii) (iii) (iv) (i)

- (2) G 1 : 1 1:
- (2) Golgi bodies
- (3) Polysomes
- (4) Endoplasmic reticulum
- **22.** The transverse section of a plant shows following anatomical features:
 - (a) Large number of scattered vascular bundles surrounded by bundle sheath.
 - (b) Large conspicuous parenchymatous ground tissue.
 - (c) Vascular bundles conjoint and closed.
 - (d) Phloem parenchyma absent.

Identify the category of plant and its part:

- (1) Monocotyledonous root
- (2) Dicotyledonous stem
- (3) Dicotyledonous root
- (4) Monocotyledonous stem
- **23.** Which of the following is put into Anaerobic sludge digester for further sewage treatment?
 - (1) Floating debris
 - (2) Effluents of primary treatment
 - (3) Activated sludge
 - (4) Primary sludge
- **24.** Match the following columns and select the **correct** option.

	Colu	mn - I			Column - II				
(a)	Eosin	Cosinophils (i)			Immune response				
(b)	Bason	ohils		(ii)	Phagocytosis				
(c)	Neut	rophils	3	(iii)	Release histaminase, destructive enzymes				
(d)	Lymp	hocyte	es	(iv)	Release granules containing histamine				
	(a)	(b)	(c)	(d)					
(1)	(iv)	(i)	(ii)	(iii)					
(2)	(i) (ii) (iv)			(iii)					
(3)	(ii) (i) (iii)		(iv)						
(4)	(iii)	(iv)	(ii)	(i)					

- **25.** Select the option including all sexually transmitted diseases.
 - (1) Gonorrhoea, Malaria, Genital herpes
 - (2) AIDS, Malaria, Filaria
 - (3) Cancer, AIDS, Syphilis
 - (4) Gonorrhoea, Syphilis, Genital herpes
- **26.** Name the enzyme that facilitates opening of DNA helix during transcription.
 - (1) DNA helicase
 - (2) DNA polymerase
 - (3) RNA polymerase
 - (4) DNA ligase
- **27.** Which of the following regions of the globe exhibits highest species diversity?
 - (1) Madagascar
 - (2) Himalayas
 - (3) Amazon forests
 - (4) Western Ghats of India
- **28.** In relation to Gross primary productivity and Net primary productivity of an ecosystem, which one of the following statements is **correct**?
 - (1) Gross primary productivity is always more than net primary productivity.
 - (2) Gross primary productivity and Net primary productivity are one and same.
 - (3) There is no relationship between Gross primary productivity and Net primary productivity.
 - (4) Gross primary productivity is always less than net primary productivity.
- **29.** Which of the following is **not** an attribute of a population?
 - (1) Natality
 - (2) Mortality
 - (3) Species interaction
 - (4) Sex ratio
- **30.** The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of:
 - (1) 1 molecule of 3-C compound
 - (2) 1 molecule of 6-C compound
 - $\begin{array}{c} \text{(3)} & 1 \, \text{molecule of 4-C compound and 1 molecule} \\ & \text{of 2-C compound} \end{array}$
 - (4) 2 molecules of 3-C compound

- **31.** Secondary metabolites such as nicotine, strychnine and caffeine are produced by plants for their:
 - (1) Growth response
 - (2) Defence action
 - (3) Effect on reproduction
 - (4) Nutritive value
- **32.** Identify the substances having glycosidic bond and peptide bond, respectively in their structure :
 - (1) Glycerol, trypsin
 - (2) Cellulose, lecithin
 - (3) Inulin, insulin
 - (4) Chitin, cholesterol
- **33.** Identify the **incorrect** statement.
 - (1) Sapwood is involved in conduction of water and minerals from root to leaf.
 - (2) Sapwood is the innermost secondary xylem and is lighter in colour.
 - (3) Due to deposition of tannins, resins, oils etc., heart wood is dark in colour.
 - (4) Heart wood does not conduct water but gives mechanical support.
- **34.** Identify the **correct** statement with reference to human digestive system.
 - (1) Serosa is the innermost layer of the alimentary canal.
 - (2) Ileum is a highly coiled part.
 - (3) Vermiform appendix arises from duodenum.
 - (4) Ileum opens into small intestine.
- 35. If the distance between two consecutive base pairs is 0.34 nm and the total number of base pairs of a DNA double helix in a typical mammalian cell is 6.6×10^9 bp, then the length of the DNA is approximately:
 - (1) 2.5 meters
 - (2) 2.2 meters
 - (3) 2.7 meters
 - (4) 2.0 meters

- **36.** Which of the following statements about inclusion bodies is **incorrect**?
 - (1) These are involved in ingestion of food particles.
 - (2) They lie free in the cytoplasm.

5

- (3) These represent reserve material in cytoplasm.
- (4) They are not bound by any membrane.
- 37. Match the following columns and select the **correct** option.

	Colu	ımn -	I		Column - II				
(a)	6 - 18 gill s	5 pairs lits	of	(i)	Trygon				
(b)		rocerca al fin	al	(ii)	Cyclostomes				
(c)	Air E	Bladdei	ſ	(iii)	Chondrichthyes				
(d)	Poise	on stin	g	(iv)	Osteichthyes				
	(a)	(b)	(c)	(d)					
(1)	(iii)	(iv)	(i)	(ii)					
(2)	(iv)	(ii)	(iii)	(i)					
(3)	(i)	(iv)	(iii)	(ii)					
(4)	(ii)	(iii)	(iv)	(i)					

- **38.** According to Robert May, the global species diversity is about:
 - (1) 20 million
 - (2) 50 million
 - (3) 7 million
 - (4) 1.5 million
- **39.** Match the following diseases with the causative organism and select the **correct** option.

	Colı	ımn -	Column - II		
(a)	Typh	noid		(i)	Wuchereria
(b)	Pneu	ımonia	ı	(ii)	Plasmodium
(c)	Filar	riasis		(iii)	Salmonella
(d)	Mala	ıria		(iv)	${\it Hae mophilus}$
	(a)	(b)	(c)	(d)	
(1)	(iii)	(iv)	(i)	(ii)	
(2)	(ii)	(i)	(iii)	(iv)	
(3)	(iv)	(i)	(ii)	(iii)	
(4)	(i)	(iii)	(ii)	(iv)	

49. Match the following columns and select the correct option.

	Colu	ımn -	I		Column - II
(a)	Pitui	tary g	land	(i)	Grave's disease
(b)	Thyr	oid gla	ınd	(ii)	Diabetes mellitus
(c)	Adre	nal gla	and	(iii)	Diabetes insipidus
(d)	Panc	reas		(iv)	Addison's disease
	(a)	(b)	(c)	(d)	
(1)	(iii)	(ii)	(i)	(iv)	
(2)	(iii)	, (, (,		(ii)	
(3)	(ii)			(iii)	
(4)	(iv)	(iii)	(i)	(ii)	

- **50.** Which of the following statements are **true** for the phylum-Chordata?
 - (a) In Urochordata notochord extends from head to tail and it is present throughout their life.
 - (b) In Vertebrata notochord is present during the embryonic period only.
 - (c) Central nervous system is dorsal and hollow.
 - (d) Chordata is divided into 3 subphyla : Hemichordata, Tunicata and Cephalochordata.
 - (1) (c) and (a)
 - (2) (a) and (b)
 - (3) (b) and (c)
 - (4) (d) and (c)
- **51.** Presence of which of the following conditions in urine are indicative of Diabetes Mellitus?
 - (1) Uremia and Renal Calculi
 - (2) Ketonuria and Glycosuria
 - (3) Renal calculi and Hyperglycaemia
 - (4) Uremia and Ketonuria
- **52.** The roots that originate from the base of the stem are:
 - (1) Primary roots
 - (2) Prop roots
 - (3) Lateral roots
 - (4) Fibrous roots

- 53. Some dividing cells exit the cell cycle and enter vegetative inactive stage. This is called quiescent stage (G_0). This process occurs at the end of:
 - (1) G_1 phase
 - (2) Sphase

7

- G_2 phase
- (4) M phase
- **54.** In light reaction, plastoquinone facilitates the transfer of electrons from :
 - (1) Cytb₆f complex to PS-I
 - (2) PS-I to NADP+
 - (3) PS-I to ATP synthase
 - (4) PS-II to Cytb₆f complex
- **55.** The specific palindromic sequence which is recognized by EcoRI is:
 - (1) 5' GGAACC 3'
 - 3' CCTTGG 5'
 - (2) 5' CTTAAG 3'
 - 3' GAATTC 5'
 - (3) 5' GGATCC 3'
 - 3' CCTAGG 5'
 - (4) 5' GAATTC 3'
 - 3' CTTAAG 5'
- **56.** Identify the basic amino acid from the following.
 - (1) Glutamic Acid
 - (2) Lysine
 - (3) Valine
 - (4) Tyrosine
- **57.** Bilaterally symmetrical and acoelomate animals are exemplified by :
 - (1) Platyhelminthes
 - (2) Aschelminthes
 - (3) Annelida
 - (4) Ctenophora

G6		8	3							
58.		sequence that controls the copy number of the ed DNA in the vector, is termed:	63.			ollowin anction	_	_	essential elements	
	(1)	Ori site		(a)	Iron		(i)	Photo	olysis of water	
	(2)	Palindromic sequence		(b)	Zinc		(ii)	Pollen germination		
	(3)	Recognition site		(c)	Boro	n	(iii)		ired for chlorophyll nthesis	
	(4)	Selectable marker		(d)	Mang	ganese	(iv)	IAA k	oiosynthesis	
	. ,			Selec	et the c	correc	t optic	n:		
59.	Flipp of :	pers of Penguins and Dolphins are examples		(1)	(a) (iv)	(b) (iii)	(c) (ii)	(d) (i)		
	(1)	Convergent evolution		(2)	(iii)	(iv)	(ii)	(i)		
	(2)	Industrial melanism		(3)	(iv)	(i)	(ii)	(iii)		
	(3)	Natural selection		(4)	(ii)	(i)	(iv)	(iii)		
	(4)	Adaptive radiation	64.	Strol	oili or o	cones a	re fou	nd in :		
	(-)	2.4dp 0.70 2.4dav.2012		(1) Pteris						
60.	The	enzyme enterokinase helps in conversion of :		(2)	(2) Marchantia					
				(3)	Equi	setum				
	(1)	trypsinogen into trypsin		(4)	Salvi	inia				
	(2)	caseinogen into casein	65.	Selec	et the c	correc	t mate	·h		
	(3)	pepsinogen into pepsin	00.	(1) Phenylketonuria - Autosomal						
	(4)	protein into polypeptides							dominant trait	
61.	The f	first phase of translation is :		(2)	r			Autosomal recessive trait, chromosome-11		
	(1)	Recognition of DNA molecule		(3)	Thal	assemi	a	-	X linked	
	(2)	Aminoacylation of tRNA		(4)	(4) Haemophilia - Y linked					
	(3)	Recognition of an anti-codon	66.	Mato	ch the f	followi	ng wit	h respe	ect to meiosis:	
	(4)	Binding of mRNA to ribosome		(a)	Zygo	tene	(i)	Term	inalization	
				(b)	Pach	ytene	(ii)	Chias	smata	
62.	Whic diure	ch of the following would help in prevention of esis?		(c)	Diplo	otene	(iii)	Cross	sing over	
	(1)			(d)	Diak	inesis	(iv)	Syna	psis	
	` /	tubules due to aldosterone		Selec	et the c	correc	t optio	n from	the following:	
	(2)				(a)	(b)	(c)	(d)		
		vasoconstriction		(1)	(iv)	(iii)	(ii)	(i)		
	(3)	Decrease in secretion of renin by JG cells		(2)	(i)	(ii)	(iv)	(iii)		
	(4)	More water reabsorption due to		(3)	(ii)	(iv)	(iii)	(i)		
		undersecretion of ADH		(4)	(iii)	(iv)	(i)	(ii)		

67. Match the following columns and select the **correct** option.

	Colu	ımn -	I		Column - II				
(a)	Closi	tridiun	n	(i)	Cyclosporin-A				
	buty	licum							
(b)	Trich	hodern	na	(ii)	Butyric Acid				
	polys	sporun	\imath						
(c)	Mon	ascus		(iii)	Citric Acid				
	purp	ureus							
(d)	Aspe	rgillus	niger	(iv)	Blood cholesterol				
					lowering agent				
	(a)	(b)	(c)	(d)					
(1)	(ii)	(i)	(iv)	(iii)					
(2)	(i)	(ii)	(iv)	(iii)					
(3)	(iv)	(iii)	(ii)	(i)					
(4)	(iii)	(iv)	(ii)	(i)					

- **68.** Ray florets have:
 - (1) Superior ovary
 - (2) Hypogynous ovary
 - (3) Half inferior ovary
 - (4) Inferior ovary
- **69.** Identify the **correct** statement with regard to G_1 phase (Gap 1) of interphase.
 - (1) Reorganisation of all cell components takes place.
 - (2) Cell is metabolically active, grows but does not replicate its DNA.
 - (3) Nuclear Division takes place.
 - (4) DNA synthesis or replication takes place.
- **70.** Match the following columns and select the **correct** option.

	· · I								
	Colu	ımn - :	I		Column - II				
(a)	Bt co	tton		(i)	Gene therapy				
(b)	Aden	osine		(ii)	Cellular defence				
	dean	ninase							
	defic	iency							
(c)	RNA	i		(iii)	Detection of HIV				
					infection				
(d)	PCR			(iv)	Bacillus				
					thuringiensis				
	(a)	(b)	(c)	(d)					
(1)	(iii)	(ii)	(i)	(iv)					
(2)	(ii)	(iii)	(iv)	(i)					
(3)	(i)	(ii)	(iii)	(iv)					
(4)	(iv)	(i)	(ii)	(iii)					

- **71.** Which of the following statements is **correct**?
 - (1) Adenine pairs with thymine through one H-bond.
 - (2) Adenine pairs with thymine through three H-bonds.
 - (3) Adenine does not pair with thymine.
 - (4) Adenine pairs with thymine through two H-bonds.
- **72.** Which one of the following is the most abundant protein in the animals?
 - (1) Collagen
 - (2) Lectin

9

- (3) Insulin
- (4) Haemoglobin
- 73. Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop.
 - (1) Gibberellin
 - (2) Ethylene
 - (3) Abscisic acid
 - (4) Cytokinin
- 74. Match the organism with its use in biotechnology.
 - (a) Bacillus (i) Cloning vector thuringiensis
 - $\begin{array}{cccc} \text{(b)} & \textit{Thermus} & & \text{(ii)} & \textit{Construction of} \\ & & & & & \text{first rDNA} \\ & & & & & \text{molecule} \end{array}$
 - $\begin{array}{ccc} \text{(c)} & A grobacterium & \text{(iii)} & \text{DNA polymerase} \\ & & tume faciens \end{array}$
 - (d) Salmonella (iv) Cry proteins typhimurium

Select the **correct** option from the following:

	(a)	(b)	(c)	(d)
(1)	(iv)	(iii)	(i)	(ii)
(2)	(iii)	(ii)	(iv)	(i)
(3)	(iii)	(iv)	(i)	(ii)
(4)	(ii)	(iv)	(iii)	(i)

- **75.** The process of growth is maximum during:
 - (1) Lag phase
 - (2) Senescence
 - (3) Dormancy
 - (4) Log phase

(4)

Insect pests

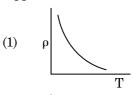
							_								
76.	By which method was a new breed 'Hisardale' of sheep formed by using Bikaneri ewes and Marino						81.	Match the following columns and s correct option.					d select the		
	ram	s ?								Colu	ımn -	I		Colu	ımn - II
	(1)	Muta	ational	breed	ing				(a)	Placenta (i)				Andı	rogens
	(2)	Cross breeding							(b)	Zona	pellu	cida	(ii)	Hum	an Chorionic
	(3)	Inbre	eeding											Gona	adotropin
	(4)	Out	crossir	ng										(hCG)	
	, ,								(c)	Bulb	er of the ovum				
77.	The	QRS co	omplex	in a s	tandaı	rd ECC	represents:			glan					
	(1)	Depo	olarisa	tion of	auricl	es			(d)	Leyd	lig cell	S	(iv)		rication of the
	(2)	Depo	olarisa	tion of	ventri	cles				(a)	(b)	(a)	(4)	Peni	S
	(3)	Repo	olarisa	tion of	ventri	cles			(1)	(a) (i)	(b) (iv)	(c) (ii)	(d) (iii)		
	(4)								(2)	(iii)	(ii)	(iv)	(i)		
	(-)	, repolarization of authors							(3)	(ii)	(iii)	(iv)	(i)		
7 8.	Gob	let cel	ls of a	limen	itary c	anal a	are modified		(4)	(iv)	(iii)	(i)	(ii)		
	from:							82.				ect ev	vents 1	that o	ccur during
	(1)	Colu	mnar	epithe	lial cel	ls			_	iration		0.11	,		
	(2)	Chondrocytes							(a)				aphrag		. 1 1
	(3)	Compound epithelial cells							(b)						ostal muscles
	(4)	(4) Squamous epithelial cells							(c)				ne decr		
								(d) (1)		a pulm nd (d)	onary	pressu	re inci	reases	
79.	Match the following:							(2)		b) and	(d)				
	(a)	Inhibitor of catalytic (i) Ricin							(3)	only		(-)			
		activity							(4)	(4) (a) and (b)					
	(b)	Poss	ess per	otide b	onds	(ii)	Malonate	83.	The process responsible for facilitating loss of water in liquid form from the tip of grass blades at night and in early morning is:						
	(c)	Cell	wall m	ateria	ıl in	(iii)	Chitin								
	(-)	Cell wall material in (iii) Chitin fungi							(1) Root pressure						
	(d)	Seco	ndary	metab	olite	(iv)	Collagen		(2) Imbibition						
	Cho	ose the	corre	ct opt	ion fro	m the	following:		(3)		molysi				
		(a)	(b)	(c)	(d)		J		(4)	Tran	spirat	ion			
	(1)	(iii)	(i)	(iv)	(ii)			84.				wing	colum	ns an	d select the
				(i)	(ii)				corı	rect op		-		0	1 77
	(2)	(iii)	(iv)						(a)		ımn -		hagou		olumn - II Asterias
	(3)	(ii)	(iii)	(i)	(iv)				(a)	pest	garious	s, poryp	magou	s (1)	Asierius
	(4)	(ii)	(iv)	(iii)	(i)				(b)			radial		(ii)	Scorpion
80.	Bt o	otton	variet	w tha	t was	devel	oped by the			-	_	and la	rva nmetry	7	
00.				-			thuringiensis		(c)		t lungs		штепу	(iii)	Ctenoplana
	(Bt)	is resis	stant t	o:					(d)		amines			(iv)	Locusta
	(1)	Fung	gal dis	eases						(a)	(b)	(c)	(d)		
	(2)	Plan	tnema	atodes					(1)	(iv)	(i)	(ii)	(iii)		
	(3)								(2) (3)	(iii) (ii)	(ii) (i)	(i) (iii)	(iv) (iv)		
			-					1	ν, Ο,	\ /	\ * /	\ /	\ - • /		

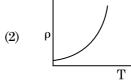
(4)

(i)

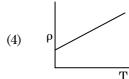
(iii)

(ii)


(iv)


- 85. Embryological support for evolution was disapproved by:
 - (1) Alfred Wallace
 - (2)Charles Darwin
 - (3)Oparin
 - Karl Ernst von Baer (4)
- 86. Which of the following hormone levels will cause release of ovum (ovulation) from the graffian follicle?
 - (1)High concentration of Progesterone
 - (2)Low concentration of LH
 - (3) Low concentration of FSH
 - High concentration of Estrogen (4)
- The body of the ovule is fused within the funicle 87. at:
 - Micropyle (1)
 - Nucellus (2)
 - Chalaza (3)
 - (4) Hilum
- 88. Cuboidal epithelium with brush border of microvilli is found in:
 - (1) ducts of salivary glands
 - proximal convoluted tubule of nephron (2)
 - (3)eustachian tube
 - (4)lining of intestine
- 89. Which of the following statements is not correct?
 - The proinsulin has an extra peptide called (1) C-peptide.
 - (2)The functional insulin has A and B chains linked together by hydrogen bonds.
 - (3)Genetically engineered insulin is produced in E-Coli.
 - (4) In man insulin is synthesised as a proinsulin.
- 90. The number of substrate level phosphorylations in one turn of citric acid cycle is:
 - (1) One
 - (2)Two
 - Three (3)
 - Zero (4)

- An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is 1.227×10^{-2} nm, the potential difference is:
 - $10^2\,\mathrm{V}$ (1)
 - $10^3\,\mathrm{V}$ (2)
 - $10^4\,\mathrm{V}$ (3)
 - (4) $10\,\mathrm{V}$
- 92. The capacitance of a parallel plate capacitor with air as medium is 6 µF. With the introduction of a dielectric medium, the capacitance becomes $30 \mu F$. The permittivity of the medium is:


$$(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2})$$

- $\begin{array}{c} 1.77 \times 10^{-12} \; C^2 \; N^{-1} \; m^{-2} \\ 0.44 \times 10^{-10} \; C^2 \; N^{-1} \; m^{-2} \end{array}$ (2)
- $5.00~{\rm C^2~N^{-1}~m^{-2}}$ (3)
- $0.44\!\times\!10^{\,-\,13}\;\mathrm{C^2\;N^{\,-\,1}\;m^{\,-\,2}}$ (4)
- 93. The quantities of heat required to raise the temperature of two solid copper spheres of radii r_1 and r_2 ($r_1 = 1.5 r_2$) through 1 K are in the ratio:
 - (1)
 - (2)
 - $\frac{4}{3} \frac{3}{2} \frac{5}{3}$ (3)
 - 27
- Which of the following graph represents the 94. variation of resistivity (ρ) with temperature (T) for copper?

95. Find the torque about the origin when a force of $3\hat{j}$ N acts on a particle whose position vector is $2\hat{k}$ m

- (1) $6\hat{j}$ N m
- (2) $-6\hat{i}$ N m
- (3) $6 \stackrel{\wedge}{k} N m$
- (4) 6i N m

96. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled?

- (1) four times
- (2) one-fourth
- (3) zero
- (4) doubled

97. A ray is incident at an angle of incidence i on one surface of a small angle prism (with angle of prism A) and emerges normally from the opposite surface. If the refractive index of the material of the prism is μ , then the angle of incidence is nearly equal to:

- (1) $\frac{2A}{\mu}$
- (2) μA
- (3) $\frac{\mu A}{2}$
- (4) $\frac{A}{2u}$

 $\begin{tabular}{ll} \bf 98. & The average thermal energy for a mono-atomic gas \\ is: (k_B is Boltzmann constant and T, absolute \\ temperature) \end{tabular}$

- (1) $\frac{3}{2} k_B T$
- $(2) \qquad \frac{5}{2} \, k_B T$
- $(3) \qquad \frac{7}{2} \, k_B T$
- (4) $\frac{1}{2} k_B T$

99. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass.

The centre of mass of the system from the $5~\mathrm{kg}$ particle is nearly at a distance of :

- (1) 50 cm
- (2) 67 cm
- (3) 80 cm
- (4) 33 cm

100. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is:

- (1) adiabatic
- (2) isochoric
- (3) isobaric
- (4) isothermal

101. In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes:

- (1) half
- (2) four times
- (3) one-fourth
- (4) double

102. The color code of a resistance is given below:

The values of resistance and tolerance, respectively, are:

- (1) $47 \text{ k}\Omega, 10\%$
- (2) $4.7 \text{ k}\Omega, 5\%$
- (3) $470 \Omega, 5\%$
- (4) $470 \text{ k}\Omega, 5\%$

103. In a certain region of space with volume 0.2 m³, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is:

- (1) 0.5 N/C
- (2) 1 N/C
- (3) 5 N/C
- (4) zero

104. The solids which have the negative temperature coefficient of resistance are:

- (1) insulators only
- (2) semiconductors only
- (3) insulators and semiconductors
- (4) metals