

45. Identify compound X in the following sequence of reactions :

$\begin{array}{c} CH_{3} \\ \hline \\ \hline \\ Cl_{2}/h\nu \\ \hline \\ X \\ \hline \\ 373 \text{ K} \end{array} \begin{array}{c} CHO \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array}$

(3) CHCl₂

(4) CCl₃

- **46.** Which of the following regions of the globe exhibits highest species diversity ?
 - (1) Western Ghats of India
 - (2) Madagascar
 - (3) Himalayas
 - (4) Amazon forests
- **47.** In water hyacinth and water lily, pollination takes place by :
 - (1) insects or wind
 - (2) water currents only
 - (3) wind and water
 - (4) insects and water

- 48. The enzyme enterokinase helps in conversion of :
 - (1) protein into polypeptides
 - (2) trypsinogen into trypsin
 - (3) caseinogen into casein
 - (4) pepsinogen into pepsin
- **49.** Presence of which of the following conditions in urine are indicative of Diabetes Mellitus ?
 - (1) Uremia and Ketonuria
 - (2) Uremia and Renal Calculi
 - (3) Ketonuria and Glycosuria
 - (4) Renal calculi and Hyperglycaemia
- **50.** Experimental verification of the chromosomal theory of inheritance was done by :
 - (1) Mendel
 - (2) Sutton
 - (3) Boveri
 - (4) Morgan
- **51.** Which of the following is **not** an attribute of a population?
 - (1) Sex ratio
 - (2) Natality
 - (3) Mortality
 - (4) Species interaction
- **52.** Goblet cells of alimentary canal are modified from :
 - (1) Squamous epithelial cells
 - (2) Columnar epithelial cells
 - (3) Chondrocytes
 - (4) Compound epithelial cells
- 53. Floridean starch has structure similar to :
 - (1) Starch and cellulose
 - (2) Amylopectin and glycogen
 - (3) Mannitol and algin
 - (4) Laminarin and cellulose

$\mathbf{E3}$

- **54.** Identify the **correct** statement with reference to human digestive system.
 - (1) Ileum opens into small intestine.
 - (2) Serosa is the innermost layer of the alimentary canal.
 - (3) Ileum is a highly coiled part.
 - (4) Vermiform appendix arises from duodenum.
- **55.** Secondary metabolites such as nicotine, strychnine and caffeine are produced by plants for their :
 - (1) Nutritive value
 - (2) Growth response
 - (3) Defence action
 - (4) Effect on reproduction
- **56.** From his experiments, S.L. Miller produced amino acids by mixing the following in a closed flask :
 - (1) CH_4 , H_2 , NH_3 and water vapor at 800°C
 - (2) CH_3 , H_2 , NH_4 and water vapor at 800°C
 - (3) CH_4 , H_2 , NH_3 and water vapor at 600°C
 - (4) CH_3, H_2, NH_3 and water vapor at 600°C
- 57. Identify the **incorrect** statement.
 - (1) Heart wood does not conduct water but gives mechanical support.
 - (2) Sapwood is involved in conduction of water and minerals from root to leaf.
 - (3) Sapwood is the innermost secondary xylem and is lighter in colour.
 - (4) Due to deposition of tannins, resins, oils etc., heart wood is dark in colour.
- 58. Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop.
 - (1) Cytokinin
 - (2) Gibberellin
 - (3) Ethylene
 - (4) Abscisic acid

- **59.** The first phase of translation is :
 - (1) Binding of mRNA to ribosome
 - (2) Recognition of DNA molecule
 - (3) Aminoacylation of tRNA
 - $(4) \qquad {\rm Recognition \ of \ an \ anti-codon}$
- **60.** Embryological support for evolution was disapproved by:
 - (1) Karl Ernst von Baer
 - (2) Alfred Wallace
 - (3) Charles Darwin
 - (4) Oparin
- **61.** Dissolution of the synaptonemal complex occurs during :
 - (1) Pachytene
 - (2) Zygotene
 - (3) Diplotene
 - (4) Leptotene
- 62. Meiotic division of the secondary oocyte is completed:
 - (1) Prior to ovulation
 - (2) At the time of copulation
 - (3) After zygote formation
 - (4) At the time of fusion of a sperm with an ovum
- **63.** Which of the following pairs is of unicellular algae?
 - (1) Laminaria and Sargassum
 - (2) Gelidium and Gracilaria
 - (3) Anabaena and Volvox
 - (4) Chlorella and Spirulina
- **64.** Identify the substances having glycosidic bond and peptide bond, respectively in their structure :
 - (1) Chitin, cholesterol
 - (2) Glycerol, trypsin
 - (3) Cellulose, lecithin
 - (4) Inulin, insulin

8

- Salvinia (1)
- (2)Pteris
- (3)Marchantia
- Equisetum (4)
- **66**. The roots that originate from the base of the stem are :
 - (1)Fibrous roots
 - (2)Primary roots
 - (3)Prop roots
 - Lateral roots (4)

67. The ovary is half inferior in :

- Brinjal (1)
- (2)Mustard
- (3)Sunflower
- (4)Plum
- **68**. Match the following columns and select the correct option.

	Colı	ımn -	I		Column - II
(a)	Orga	n of C	orti	(i)	Connects middle
					ear and pharynx
(b)	Coch	lea		(ii)	Coiled part of the
					labyrinth
(c)	Eust	achiar	n tube	(iii)	Attached to the
					oval window
(d)	Stap	Stapes			Located on the
					basilar
					membrane
	(a)	(b)	(c)	(d)	
(1)	(ii)	(iii)	(i)	(iv)	
(2)	(iii)	(i)	(iv)	(ii)	
(3)	(iv)	(ii)	(i)	(iii)	
(4)	(i)	(ii)	(iv)	(iii)	

- 69. Identify the **wrong** statement with reference to immunity.
 - When exposed to antigen (living or dead) (1)antibodies are produced in the host's body. It is called "Active immunity".
 - When ready-made antibodies are directly (2)given, it is called "Passive immunity".
 - Active immunity is quick and gives full (3)response.
 - (4)Foetus receives some antibodies from mother, it is an example for passive immunity.

- 70. Some dividing cells exit the cell cycle and enter vegetative inactive stage. This is called quiescent stage (G_0) . This process occurs at the end of :
 - (1)M phase
 - (2) G_1 phase
 - Sphase (3)
 - G₂phase (4)
- 71. Select the **correct** statement.
 - (1)Glucocorticoids stimulate gluconeogenesis.
 - Glucagon is associated with hypoglycemia. (2)
 - (3)Insulin acts on pancreatic cells and adipocytes.
 - (4)Insulin is associated with hyperglycemia.
- 72. Match the following diseases with the causative organism and select the **correct** option.

	Colı	ımn -	I		Column - II
(a)	Typh	Typhoid			Wuchereria
(b)	Pneu	umonia	ι	(ii)	Plasmodium
(c)	Filar	riasis		(iii)	Salmonella
(d)	Mala	aria		(iv)	Haemophilus
	(a)	(b)	(c)	(d)	
(1)	(i)	(iii)	(ii)	(iv)	
(2)	(iii)	(iv)	(i)	(ii)	
(3)	(ii)	(i)	(iii)	(iv)	
(4)	(iv)	(i)	(ii)	(iii)	

73. Select the **correct** match.

(1)	Haemophilia	-	Y linked
(2)	Phenylketonuria	-	Autosomal dominant trait
(3)	Sickle cell anaemia	-	Autosomal recessive trait, chromosome-11
(4)	Thalassemia	-	X linked

E3

- 74. Which is the important site of formation of glycoproteins and glycolipids in eukaryotic cells?
 - (1) Endoplasmic reticulum
 - (2) Peroxisomes
 - (3) Golgi bodies
 - (4) Polysomes
- **75.** In relation to Gross primary productivity and Net primary productivity of an ecosystem, which one of the following statements is **correct** ?
 - (1) Gross primary productivity is always less than net primary productivity.
 - (2) Gross primary productivity is always more than net primary productivity.
 - (3) Gross primary productivity and Net primary productivity are one and same.
 - (4) There is no relationship between Gross primary productivity and Net primary productivity.
- **76.** Which of the following would help in prevention of diuresis ?
 - (1) More water reabsorption due to undersecretion of ADH
 - (2) Reabsorption of Na⁺ and water from renal tubules due to aldosterone
 - (3) Atrial natriuretic factor causes vasoconstriction
 - (4) Decrease in secretion of renin by JG cells
- 77. Identify the **correct** statement with regard to G_1 phase (Gap 1) of interphase.
 - (1) DNA synthesis or replication takes place.
 - (2) Reorganisation of all cell components takes place.
 - (3) Cell is metabolically active, grows but does not replicate its DNA.
 - (4) Nuclear Division takes place.

- Which of the following refer to **correct** example(s) of organisms which have evolved due to changes in environment brought about by anthropogenic action ?
 - (a) Darwin's Finches of Galapagos islands.
 - (b) Herbicide resistant weeds.
 - (c) Drug resistant eukaryotes.
 - (d) Man-created breeds of domesticated animals like dogs.
 - (1) only(a)
 - (2) (a) and (c)
 - (3) (b), (c) and (d)
 - (4) only (d)
- **79.** The plant parts which consist of two generations one within the other :
 - (a) Pollen grains inside the anther
 - (b) Germinated pollen grain with two male gametes
 - (c) Seed inside the fruit
 - (d) Embryo sac inside the ovule
 - (1) (a) only
 - (2) (a), (b) and (c)
 - (3) (c) and (d)
 - (4) (a) and (d)
- 80. Match the trophic levels with their **correct** species examples in grassland ecosystem.
 - (a) Fourth trophic level (i) Crow
 - (b) Second trophic level (ii) Vulture
 - (c) First trophic level (iii) Rabbit
 - (d) Third trophic level (iv) Grass
 - Select the **correct** option :

(1)

(2)

(3)

(a)	(b)	(c)	(d)
(ii)	(iii)	(iv)	(i)
(iii)	(ii)	(i)	(iv)
(iv)	(iii)	(ii)	(i)

- (4) (i) (ii) (iii) (iv)
- $\textbf{81.} \quad \text{The QRS complex in a standard ECG represents:}$
 - (1) Repolarisation of auricles
 - (2) Depolarisation of auricles
 - (3) Depolarisation of ventricles
 - (4) Repolarisation of ventricles

10

78.

89.

90.

- 82. The process responsible for facilitating loss of water in liquid form from the tip of grass blades at night and in early morning is :
 - (1) Transpiration
 - (2) Root pressure
 - (3) Imbibition
 - (4) Plasmolysis
- **83.** According to Robert May, the global species diversity is about :
 - (1) 1.5 million
 - (2) 20 million
 - (3) 50 million
 - (4) 7 million
- 84. In gel electrophoresis, separated DNA fragments can be visualized with the help of :
 - (1) Acetocarmine in bright blue light
 - (2) Ethidium bromide in UV radiation
 - (3) Acetocarmine in UV radiation
 - (4) Ethidium bromide in infrared radiation

85. Match the following concerning essential elements and their functions in plants :

- (a) Iron (i) Photolysis of water
- (b) Zinc (ii) Pollen germination
- (c) Boron (iii) Required for chlorophyll biosynthesis
- (d) Manganese (iv) IAA biosynthesis

Select the **correct** option :

	(a)	(b)	(c)	(d)
(1)	(ii)	(i)	(iv)	(iii)
(2)	(iv)	(iii)	(ii)	(i)
(3)	(iii)	(iv)	(ii)	(i)
(4)	(iv)	(i)	(ii)	(iii)

- **86.** Flippers of Penguins and Dolphins are examples of :
 - (1) Adaptive radiation
 - (2) Convergent evolution
 - (3) Industrial melanism
 - (4) Natural selection

- 87. If the distance between two consecutive base pairs is 0.34 nm and the total number of base pairs of a DNA double helix in a typical mammalian cell is 6.6×10^9 bp, then the length of the DNA is approximately:
 - (1) 2.0 meters
 - (2) 2.5 meters
 - (3) 2.2 meters
 - $(4) \qquad 2.7 \text{ meters}$
- 88. Match the following columns and select the **correct** option.

	Colu	ımn -	I		Column - II
(a)	Float	ting Ri	bs	(i)	Located between second and seventh ribs
(b)	Acro	mion		(ii)	Head of the Humerus
(c)	Scap	ula		(iii)	Clavicle
(d)	Glen	oid cav	vity	(iv)	Do not connect with the sternur
	(a)	(b)	(c)	(d)	
(1)	(ii)	(iv)	(i)	(iii)	
(2)	(i)	(iii)	(ii)	(iv)	
(3)	(iii)	(ii)	(iv)	(i)	
(4)	(iv)	(iii)	(i)	(ii)	
Mon of : (1)	Tran	sporto	ofGene	tically	in 1987 for contro
	irom	one co		to ano	
(0)					
	Emis				ting substances
(2) (3) (4)	Emis Relea	ase of (Green	House	
	Emis Relea		Green	House	
(3) (4)	Emis Relea Disp	ase of (osal of	Green e-wast	House ces	
(3) (4)	Emis Relea Disp	ase of (osal of corre	Green e-wast	House tes r from Join	gases
(3) (4) Choo	Emis Reles Disp ose the Ligas	ase of (osal of corre	Green : e-wast ect pai	House res Join mole Brea	gases the following : the two DNA
(3) (4) Choo (1)	Emis Rele: Disp ose the Liga: Polyr	ase of (osal of corre ses	Green : e-wast ect pai	House res Join mole Brea fragr	gases the following : the two DNA cules k the DNA into nents rate the two strand

91.	Whi	ch of the following statements about inclusion	12 96.	Bila	terallv	symm	etrica	l and a	coelomate animal
		es is incorrect ?		Bilaterally symmetrical and acoelomate anima are exemplified by :					
	(1)	They are not bound by any membrane.		(1) (2)		ophora yhelmi			
	(2)	These are involved in ingestion of food		(2) (3)		elmin			
		particles.		(4)	Anne	elida			
	(3)	They lie free in the cytoplasm.	97.				wing	colum	ns and select th
	(4)	These represent reserve material in		correct option. Column - I				Column - II	
		cytoplasm.		(a)	Bt co		L	(i)	Gene therapy
92.	Rav	florets have :		(u) (b)		nosine		(ii)	Cellular defence
	(1)	Inferior ovary				ninase		~ /	
		-				iency			
	(2)	Superior ovary		(c)	RNA	i		(iii)	Detection of HIV
	(3)	Hypogynous ovary			DCD			()	infection <i>Bacillus</i>
	(4)	Half inferior ovary		(d)	PCR			(iv)	Baculus thuringiensis
93.	Whi	ch of the following is not an inhibitory			(a)	(b)	(c)	(d)	0
55.		stance governing seed dormancy?		(1)	(iv)	(i)	(ii)	(iii)	
	(1)	Gibberellic acid		(2) (3)	(iii) (ii)	(ii) (iii)	(i) (iv)	(iv) (i)	
	(2)	Abscisic acid		(4)	(i)	(ii)	(iii)	(iv)	
				· · ·	()				
	(3)	Phenolic acid	98.				l was a	new l	oreed 'Hisardale' o
	(3) (4)	Phenolic acid Para-ascorbic acid	98.	By v shee	vhich r p form	nethod			
	(3) (4)	Phenolic acid Para-ascorbic acid	98.	By v	vhich r p form s ?	nethod	using H		
94.	(4)			By v shee ram (1) (2)	which r p form s ? Out Muta	nethod ed by t crossin ational	using H ng Ibreed	Bikane	preed 'Hisardale' o ri ewes and Marin
94.	(4) Bt c	Para-ascorbic acid cotton variety that was developed by the oduction of toxin gene of <i>Bacillus thuringiensis</i>		By v shee ram (1) (2) (3)	which r p form s ? Out Muta Cros	nethod ed by t crossin ational s breed	using H ng Ibreed	Bikane	
94.	(4) Bt c intro (Bt)	Para-ascorbic acid cotton variety that was developed by the oduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to :		By v shee ram (1) (2) (3) (4)	which r p form s ? Out Muta Cros Inbre	nethod ed by t crossir ational s breed eeding	using H ng breed ling	3ikane ing	ri ewes and Marin
94.	 (4) Bt contraction (Bt) (1) 	Para-ascorbic acid cotton variety that was developed by the oduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests		By v shee ram (1) (2) (3) (4) Mat	which r p form s ? Out Muta Cros Inbre	nethod ed by t crossin ational s breed eeding e follo	using H ng breed ling	3ikane ing	ri ewes and Marin
94.	 (4) Bt contraction (Bt) (1) (2) 	Para-ascorbic acid cotton variety that was developed by the oduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases		By v shee ram (1) (2) (3) (4) Mat	which r p form s ? Out Mut: Cros Inbro ch the rect op	nethod ed by t crossin ational s breed eeding e follo	using H ng breed ling wing	3ikane ing	ri ewes and Marin
94.	 (4) Bt contraction (Bt) (1) (2) (3) 	Para-ascorbic acid cotton variety that was developed by the oduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases Plant nematodes		By v shee ram (1) (2) (3) (4) Mat corr (a)	which r p form s? Out Mut: Cros Inbro ch the rect op Colu Eosi	nethod ed by t crossin ational s breed eeding e follo tion. umn - nophils	using H ng breed ling wing I	3ikane ing colum (i)	ri ewes and Marin ns and select th Column - II Immune respons
94.	 (4) Bt contraction (Bt) (1) (2) 	Para-ascorbic acid cotton variety that was developed by the oduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases		By v shee ram (1) (2) (3) (4) Mat corr (a) (b)	which r p form s ? Out Muta Cross Inbre ch the rect op Colu Eosin Base	nethod ed by t crossin ational s breed eeding e follo tion. umn - nophils phils	using H ng breed ling wing I	3ikane ing colum (i) (ii)	ri ewes and Marin ns and select th Column - II Immune respons Phagocytosis
	 (4) Bt contraction (Bt) (1) (2) (3) (4) 	Para-ascorbic acid cotton variety that was developed by the oduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases Plant nematodes Insect predators	99.	By v shee ram (1) (2) (3) (4) Mat corr (a)	which r p form s ? Out Muta Cross Inbre ch the rect op Colu Eosin Base	nethod ed by t crossin ational s breed eeding e follo tion. umn - nophils	using H ng breed ling wing I	3ikane ing colum (i)	ri ewes and Marin ns and select th Column - II Immune respons Phagocytosis Release
94.	 (4) Bt of intro (Bt) (1) (2) (3) (4) Iden 	Para-ascorbic acid cotton variety that was developed by the oduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases Plant nematodes	99.	By v shee ram (1) (2) (3) (4) Mat corr (a) (b)	which r p form s ? Out Muta Cross Inbre ch the rect op Colu Eosin Base	nethod ed by t crossin ational s breed eeding e follo tion. umn - nophils phils	using H ng breed ling wing I	3ikane ing colum (i) (ii)	ri ewes and Marin ns and select th Column - II Immune respons Phagocytosis
	 (4) Bt of intro (Bt) (1) (2) (3) (4) Iden 	Para-ascorbic acid cotton variety that was developed by the oduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases Plant nematodes Insect predators atify the wrong statement with reference to	99.	By v shee ram (1) (2) (3) (4) Mat corr (a) (b)	which r p form s ? Out Muta Cross Inbre ch the rect op Colu Eosin Base	nethod ed by t crossin ational s breed eeding e follo tion. umn - nophils phils	using H ng breed ling wing I	3ikane ing colum (i) (ii)	ri ewes and Marin ns and select th Column - II Immune respons Phagocytosis Release histaminase,
	 (4) Bt of intro (Bt) (1) (2) (3) (4) Identication transmission 	Para-ascorbic acid cotton variety that was developed by the oduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases Plant nematodes Insect predators tify the wrong statement with reference to sport of oxygen.	99.	By v shee ram (1) (2) (3) (4) Mat corr (a) (b)	which r p form s ? Out Muta Cross Inbre ch the cect op Colu Base Neut	nethod ed by t crossin ational s breed eeding e follo tion. umn - nophils phils	using H ng breed ling wing I s	3ikane ing colum (i) (ii)	ri ewes and Marin ns and select th Column - II Immune respons Phagocytosis Release histaminase, destructive enzymes Release granule
	 (4) Bt of intro (Bt) (1) (2) (3) (4) Identication transmission 	Para-ascorbic acid potton variety that was developed by the poduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases Plant nematodes Insect predators atify the wrong statement with reference to sport of oxygen. Binding of oxygen with haemoglobin is mainly related to partial pressure of O_2 . Partial pressure of CO_2 can interfere with	99.	By v shee ram (1) (2) (3) (4) Mat corr (a) (b) (c)	which r p form s ? Out Muta Cross Inbre ch the cect op Colu Base Neut	nethod ed by t crossin ational s breed eeding e follo tion. umn - nophils phils trophil	using H ng breed ling wing I s	3ikane ing colum (i) (ii) (iii)	ri ewes and Marin ns and select th Column - II Immune respons Phagocytosis Release histaminase, destructive enzymes Release granule containing
	 (4) Bt of intro (Bt) (1) (2) (3) (4) Ident tran (1) (2) 	Para-ascorbic acid potton variety that was developed by the poluction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases Plant nematodes Insect predators atify the wrong statement with reference to sport of oxygen. Binding of oxygen with haemoglobin is mainly related to partial pressure of O_2 . Partial pressure of CO_2 can interfere with O_2 binding with haemoglobin.	99.	By v shee ram (1) (2) (3) (4) Mat corr (a) (b) (c)	which r p form s ? Out Muta Cross Inbre ch the cect op Colu Base Neut	nethod ed by t crossin ational s breed eeding e follo tion. umn - nophils phils trophil	using H ng breed ling wing I s	3ikane ing colum (i) (ii) (iii)	ri ewes and Marir ns and select th Column - II Immune respons Phagocytosis Release histaminase, destructive enzymes Release granule
	 (4) Bt of intro (Bt) (1) (2) (3) (4) Identrant (1) 	Para-ascorbic acid potton variety that was developed by the poduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases Plant nematodes Insect predators atify the wrong statement with reference to sport of oxygen. Binding of oxygen with haemoglobin is mainly related to partial pressure of O_2 . Partial pressure of CO_2 can interfere with	99.	By v shee ram (1) (2) (3) (4) Mat corr (a) (b) (c) (d) (1)	which r p form s ? Out Muta Cross Inbre ch the rect op Colu Eosin Base Neut Lym (a) (iii)	nethod ed by t crossin ational s breed eeding e follo tion. umn - nophils trophils trophil phocyt (b) (iv)	using H ng breed ling wing I s s es (c) (ii)	3ikane ing colum (i) (ii) (iii) (iv) (d) (i)	ri ewes and Marin ns and select th Column - II Immune respons Phagocytosis Release histaminase, destructive enzymes Release granule containing
	 (4) Bt of intro (Bt) (1) (2) (3) (4) Ident tran (1) (2) 	Para-ascorbic acid potton variety that was developed by the poduction of toxin gene of <i>Bacillus thuringiensis</i> is resistant to : Insect pests Fungal diseases Plant nematodes Insect predators Atify the wrong statement with reference to sport of oxygen. Binding of oxygen with haemoglobin is mainly related to partial pressure of O_2 . Partial pressure of CO_2 can interfere with O_2 binding with haemoglobin. Higher H ⁺ conc. in alveoli favours the	99.	By v shee ram (1) (2) (3) (4) Mat corr (a) (b) (c) (d)	which r p form s? Out Mut: Cross Inbre ch the cect op Colu Eosi: Base Neut Lym (a)	nethod ed by u crossin ational s breed eeding e follo tion. umn - nophils trophils trophils phocyt (b)	using H ng breed ling wing I s s es (c)	3ikane ing colum (i) (ii) (iii) (iv) (d)	ri ewes and Marin ns and select th Column - II Immune respons Phagocytosis Release histaminase, destructive enzymes Release granules containing

- 100. Which of the following statements is correct?
 - (1) Adenine pairs with thymine through two H-bonds.
 - (2) Adenine pairs with thymine through one H-bond.
 - (3) Adenine pairs with thymine through three H-bonds.
 - (4) Adenine does not pair with thymine.
- **101.** The infectious stage of *Plasmodium* that enters the human body is :
 - (1) Trophozoites
 - (2) Sporozoites
 - (3) Female gametocytes
 - (4) Male gametocytes
- **102.** The body of the ovule is fused within the funicle at :
 - (1) Hilum
 - (2) Micropyle
 - (3) Nucellus
 - (4) Chalaza
- 103. Snow-blindness in Antarctic region is due to :
 - (1) Freezing of fluids in the eye by low temperature
 - (2) Inflammation of cornea due to high dose of UV-B radiation
 - (3) High reflection of light from snow
 - (4) Damage to retina caused by infra-red rays
- **104.** Which of the following statements is **not correct**?
 - (1) In man insulin is synthesised as a proinsulin.
 - (2) The proinsulin has an extra peptide called C-peptide.
 - (3) The functional insulin has A and B chains linked together by hydrogen bonds.
 - (4) Genetically engineered insulin is produced in *E-Coli*.

- 105. Identify the **wrong** statement with regard to Restriction Enzymes.
 - (1) Each restriction enzyme functions by inspecting the length of a DNA sequence.
 - (2) They cut the strand of DNA at palindromic sites.
 - (3) They are useful in genetic engineering.
 - (4) Sticky ends can be joined by using DNA ligases.

106. Match the following with respect to meiosis :

- (a) Zygotene (i) Terminalization
- (b) Pachytene (ii) Chiasmata
- (c) Diplotene (iii) Crossing over
- (d) Diakinesis (iv) Synapsis

Select the **correct** option from the following :

	(a)	(b)	(c)	(d)
(1)	(iii)	(iv)	(i)	(ii)
(2)	(iv)	(iii)	(ii)	(i)
(3)	(i)	(ii)	(iv)	(iii)
(4)	(ii)	(iv)	(iii)	(i)

- **107.** Which of the following statements are **true** for the phylum-Chordata?
 - (a) In Urochordata notochord extends from head to tail and it is present throughout their life.
 - (b) In Vertebrata notochord is present during the embryonic period only.
 - (c) Central nervous system is dorsal and hollow.
 - (d) Chordata is divided into 3 subphyla : Hemichordata, Tunicata and Cephalochordata.
 - (1) (d) and (c)
 - (2) (c) and (a)
 - (3) (a) and (b)
 - (4) (b) and (c)
- **108.** Which of the following is **correct** about viroids ?
 - (1) They have RNA with protein coat.
 - (2) They have free RNA without protein coat.
 - (3) They have DNA with protein coat.
 - (4) They have free DNA without protein coat.

E3

14

- **109.** The specific palindromic sequence which is recognized by EcoRI is :
 - (1) 5' GAATTC 3' 3' - CTTAAG - 5'
 - (2) 5' GGAACC 3'
 - 3' CCTTGG 5'
 - (3) 5' CTTAAG 3' 3' - GAATTC - 5'
 - (4) 5' GGATCC 3' 3' - CCTAGG - 5'
- **110.** Select the **correct** events that occur during inspiration.
 - (a) Contraction of diaphragm
 - (b) Contraction of external inter-costal muscles
 - (c) Pulmonary volume decreases
 - (d) Intra pulmonary pressure increases
 - (1) (a) and (b)
 - (2) (c) and (d)
 - (3) (a), (b) and (d)
 - (4) only (d)
- 111. Match the following columns and select the **correct** option.

	Colı	ımn -	Ι	Column - II	
(a)	Pitui	Pituitary gland			Grave's disease
(b)	Thyr	oid gla	and	(ii)	Diabetes mellitus
(c)	Adre	Adrenal gland			Diabetes insipidus
(d)	Pano	reas		(iv)	Addison's disease
	(a)	(b)	(c)	(d)	
(1)	(iv)	(iii)	(i)	(ii)	
(2)	(iii)	(ii)	(i)	(iv)	
(3)	(iii)	(i)	(iv)	(ii)	
(4)	(ii)	(i)	(iv)	(iii)	

112. Match the following columns and select the **correct** option.

	Colu	ımn -	I		Column - II
(a)	6 - 18	5 pairs	of	(i)	Trygon
	$\operatorname{gill} \operatorname{s}$	lits			
(b)	Hete	rocerca	al	(ii)	Cyclostomes
	caud	al fin			
(c)	Air B	Air Bladder			Chondrichthyes
(d)	Poise	on stin	g	(iv)	Osteichthyes
	(a)	(b)	(c)	(d)	
(1)	(ii)	(iii)	(iv)	(i)	
(2)	(iii)	(iv)	(i)	(ii)	
(3)	(iv)	(ii)	(iii)	(i)	
(4)	(i)	(iv)	(iii)	(ii)	

- **113.** If the head of cockroach is removed, it may live for few days because :
 - (1) the supra-oesophageal ganglia of the cockroach are situated in ventral part of abdomen.
 - (2) the cockroach does not have nervous system.
 - (3) the head holds a small proportion of a nervous system while the rest is situated along the ventral part of its body.
 - (4) the head holds a 1/3rd of a nervous system while the rest is situated along the dorsal part of its body.
- **114.** How many true breeding pea plant varieties did Mendel select as pairs, which were similar except in one character with contrasting traits ?
 - (1) 4
 - (2) 2
 - (3) 14
 - (4) 8
- **115.** Cuboidal epithelium with brush border of microvilli is found in :
 - (1) lining of intestine
 - (2) ducts of salivary glands
 - (3) proximal convoluted tubule of nephron
 - (4) eustachian tube
- **116.** The sequence that controls the copy number of the linked DNA in the vector, is termed :
 - (1) Selectable marker
 - (2) Ori site
 - (3) Palindromic sequence
 - (4) Recognition site
- 117. Match the organism with its use in biotechnology.

(a)	Bacillus	(i)	Cloning vector
	thuringiensis		

(b)	Thermus	(ii)	Construction of
	a quaticus		first rDNA
			molecule
(c)	Agrobacterium tumefaciens	(iii)	DNA polymerase
(d)	Salmonella typhimurium	(iv)	Cry proteins
Sele	ct the correct opti		n the following :

	(a)	(b)	(c)	(d)
(1)	(ii)	(iv)	(iii)	(i)
(2)	(iv)	(iii)	(i)	(ii)
(3)	(iii)	(ii)	(iv)	(i)
(4)	(iii)	(iv)	(i)	(ii)

15

							1
118.		n light reaction, plastoquinone facilitates the cansfer of electrons from :					
	(1)	PS-I	I to Cy	tb ₆ f co	mplex		
	(2)	Cytb	o ₆ f com	plex to	PS-I		
	(3)	PS-I	to NA	DP+			
	(4)	PS-I	to ATI	? syntl	hase		
119.	The	proces	s of gro	owth i	s maxi	mum (during :
	(1)	Logp	phase				
	(2)	Lag	phase				
	(3)	Sene	scence				
	(4)	Dorn	nancy				
120.							y nitrogenase s is/are :
	(1)	Amn	nonia a	lone			
	(2)	Nitra	ate alo	ne			
	(3)	Amn	nonia a	and oxy	ygen		
	(4)	Amn	Ammonia and hydrogen				
121.	Match the following columns and select the correct option.						
		Colu	Column - I Column - II				
	(a)	Greg pest	Gregarious, polyphagous (i) Asterias pest				
	(b)	symi	Adult with radial (ii) Scorpion symmetry and larva with bilateral symmetry				
	(c)	Book	Book lungs (iii) Ctenoplana				
	(d)	Biolu	Bioluminescence				Locusta
		(a)	(b)	(c)	(d)		
	(1)	(i)	(iii)	(ii)	(iv)		
	(2)	(iv)	(i)	(ii)	(iii)		
	(3)	(iii)	(ii)	(i)	(iv)		
	(4)	(ii)	(i)	(iii)	(iv)		
122.	Which one of the following is the most abundant protein in the animals ?						
	1			mans.			

- (1) Haemoglobin
- (2) Collagen
- (3) Lectin
- (4) Insulin

- 123. Identify the basic amino acid from the following.
 - (1) Tyrosine
 - (2) Glutamic Acid
 - (3) Lysine
 - (4) Valine
- **124.** Match the following columns and select the **correct** option.

		Colu	mn - l	[Column - II		
	(a)	Clostridium butylicum			(i)	Cyclosporin-A	
	(b)		oderm porum		(ii)	Butyric Acid	
	(c)	Monascus purpureus			(iii)	Citric Acid	
	(d)	Aspergillus niger			(iv)	Blood cholesterol lowering agent	
		(a)	(b)	(c)	(d)		
	(1)	(iii)	(iv)	(ii)	(i)		
	(2)	(ii)	(i)	(iv)	(iii)		
	(3)	(i)	(ii)	(iv)	(iii)		
	(4)	(iv)	(iii)	(ii)	(i)		
125.		ch of the following hormone levels will cause ase of ovum (ovulation) from the graffian cle?					
	(1)	High concentration of Estrogen					
	(2)	High concentration of Progesterone					
	(3)	Low concentration of LH					
	(4)	Low concentration of FSH					
126.	The o	oxygenation activity of RuBisCo enzyme in					

- **126.** The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of :
 - (1) 2 molecules of 3-C compound
 - (2) 1 molecule of 3-C compound
 - (3) 1 molecule of 6-C compound
 - (4) 1 molecule of 4-C compound and 1 molecule of 2-C compound
- **127.** Select the option including all sexually transmitted diseases.
 - (1) Gonorrhoea, Syphilis, Genital herpes
 - (2) Gonorrhoea, Malaria, Genital herpes
 - (3) AIDS, Malaria, Filaria
 - (4) Cancer, AIDS, Syphilis

 $\mathbf{E3}$

 $\mathbf{E3}$

- **128.** The transverse section of a plant shows following anatomical features :
 - (a) Large number of scattered vascular bundles surrounded by bundle sheath.
 - (b) Large conspicuous parenchymatous ground tissue.
 - (c) Vascular bundles conjoint and closed.
 - (d) Phloem parenchyma absent.

Identify the category of plant and its part :

- (1) Monocotyledonous stem
- (2) Monocotyledonous root
- (3) Dicotyledonous stem
- (4) Dicotyledonous root
- **129.** The number of substrate level phosphorylations in one turn of citric acid cycle is :
 - (1) Zero
 - (2) One
 - (3) Two
 - (4) Three
- **130.** Match the following :

(a)	Inhibitor of catalytic	(i)	Ricin
	activity		
(b)	Possess peptide bonds	(ii)	Malonate
(c)	Cell wall material in fungi	(iii)	Chitin
(\mathbf{J})	Secondom metabolita	(irr)	Collogon

(d) Secondary metabolite (iv) Collagen

Choose the **correct** option from the following :

	(a)	(b)	(c)	(d)
(1)	(ii)	(iv)	(iii)	(i)
(2)	(iii)	(i)	(iv)	(ii)
(3)	(iii)	(iv)	(i)	(ii)
(4)	(ii)	(iii)	(i)	(iv)

- **131.** Identify the **wrong** statement with reference to the gene 'I' that controls ABO blood groups.
 - (1) The gene (I) has three alleles.
 - (2) A person will have only two of the three alleles.
 - $\begin{array}{ll} \text{(3)} & \text{When } I^A \text{ and } I^B \text{ are present together, they} \\ & \text{express same type of sugar.} \end{array}$
 - (4) Allele 'i' does not produce any sugar.

- 16
 - **132.** In which of the following techniques, the embryos are transferred to assist those females who cannot conceive ?
 - (1) ZIFT and IUT
 - (2) GIFT and ZIFT
 - (3) ICSI and ZIFT
 - (4) GIFT and ICSI
 - **133.** Which of the following is put into Anaerobic sludge digester for further sewage treatment ?
 - (1) Primary sludge
 - (2) Floating debris
 - (3) Effluents of primary treatment
 - (4) Activated sludge
 - **134.** Name the enzyme that facilitates opening of DNA helix during transcription.
 - (1) DNA ligase
 - (2) DNA helicase
 - (3) DNA polymerase
 - (4) RNA polymerase
 - 135. Match the following columns and select the **correct** option.

	Column - I				Column - II
(a)	Place	Placenta			Androgens
(b)	Zona	pelluc	ida	(ii)	Human Chorionic Gonadotropin (hCG)
(c)	Bulbo-urethral glands			(iii)	Layer of the ovum
(d)	Leydig cells			(iv)	Lubrication of the
					Penis
	(a)	(b)	(c)	(d)	
(1)	(iv)	(iii)	(i)	(ii)	
(2)	(i)	(iv)	(ii)	(iii)	
(3)	(iii)	(ii)	(iv)	(i)	
(4)	(ii)	(iii)	(iv)	(i)	

136. A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27°C.

Its density is : $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$

- (1) 0.5 kg/m^3
- (2) 0.2 kg/m^3
- (3) 0.1 kg/m^3
- (4) 0.02 kg/m^3