$\mathbf{F4}$

- 6
- **37.** For which one of the following, Bohr model is **not** valid?
 - (1) Deuteron atom
 - (2) Singly ionised neon atom (Ne^+)
 - (3) Hydrogen atom
 - (4) Singly ionised helium atom (He $^+$)
- **38.** A spherical conductor of radius 10 cm has a charge of 3.2×10^{-7} C distributed uniformly. What is the magnitude of electric field at a point 15 cm from the centre of the sphere ?

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$
(1) $1.28 \times 10^6 \text{ N/C}$

- (2) 1.28×10^7 N/C
- (3) 1.28×10^4 N/C
- (4) 1.28×10^5 N/C
- **39.** The energy required to break one bond in DNA is 10^{-20} J. This value in eV is nearly :
 - (1) 0.06
 - (2) 0.006
 - (3) 6
 - (4) 0.6
- **40.** In a certain region of space with volume 0.2 m³, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is :
 - (1) 1 N/C
 - (2) 5 N/C
 - (3) zero
 - (4) 0.5 N/C
- **41.** A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of the solenoid is :

 $(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$

- (1) $6.28 \times 10^{-5} \,\mathrm{T}$
- (2) $3.14 \times 10^{-5} \,\mathrm{T}$
- (3) $6.28 \times 10^{-4} \,\mathrm{T}$
- (4) $3.14 \times 10^{-4} \,\mathrm{T}$

- 42. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled?
 - (1) one-fourth
 - (2) zero
 - (3) doubled
 - (4) four times
- **43.** A capillary tube of radius r is immersed in water and water rises in it to a height h. The mass of the water in the capillary is 5 g. Another capillary tube of radius 2r is immersed in water. The mass of water that will rise in this tube is :
 - (1) 10.0 g
 - (2) 20.0 g
 - (3) 2.5 g
 - (4) 5.0 g
- 44. A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth ?
 - (1) 30 N
 - (2) 24 N
 - (3) 48 N
 - (4) 32 N
- 45. A series LCR circuit is connected to an ac voltage source. When L is removed from the circuit, the phase difference between current and voltage is π/3. If instead C is removed from the circuit, the phase difference is again π/3 between current and voltage. The power factor of the circuit is :
 - (1) 1.0
 - (2) -1.0
 - (3) zero
 - (4) 0.5
- **46.** The ovary is half inferior in :
 - (1) Sunflower
 - (2) Plum
 - (3) Brinjal
 - (4) Mustard

- 47. Identify the **wrong** statement with regard to Restriction Enzymes.
 - (1) They are useful in genetic engineering.
 - (2) Sticky ends can be joined by using DNA ligases.
 - (3) Each restriction enzyme functions by inspecting the length of a DNA sequence.
 - (4) They cut the strand of DNA at palindromic sites.
- **48.** Identify the **wrong** statement with reference to transport of oxygen.
 - (1) Higher H⁺ conc. in alveoli favours the formation of oxyhaemoglobin.
 - (2) Low pCO_2 in alveoli favours the formation of oxyhaemoglobin.
 - (3) Binding of oxygen with haemoglobin is mainly related to partial pressure of O₂.
 - (4) Partial pressure of CO_2 can interfere with O_2 binding with haemoglobin.
- **49.** In water hyacinth and water lily, pollination takes place by :
 - (1) wind and water
 - (2) insects and water
 - (3) insects or wind
 - (4) water currents only
- 50. If the distance between two consecutive base pairs is 0.34 nm and the total number of base pairs of a DNA double helix in a typical mammalian cell is 6.6×10^9 bp, then the length of the DNA is approximately:
 - (1) 2.2 meters
 - (2) 2.7 meters
 - (3) 2.0 meters
 - (4) 2.5 meters
- **51.** Dissolution of the synaptonemal complex occurs during :
 - (1) Diplotene
 - (2) Leptotene
 - (3) Pachytene
 - (4) Zygotene

- **52.** Match the following concerning essential elements and their functions in plants :
 - (a) Iron(b) Zinc(c) Pollen germination
 - (c) Boron (iii) Required for chlorophyll biosynthesis
 - (d) Manganese (iv) IAA biosynthesis

Select the **correct** option :

	(a)	(b)	(c)	(d)
(1)	(iii)	(iv)	(ii)	(i)
(2)	(iv)	(i)	(ii)	(iii)
(3)	(ii)	(i)	(iv)	(iii)
(4)	(iv)	(iii)	(ii)	(i)

- **53.** The body of the ovule is fused within the funicle at :
 - (1) Nucellus
 - (2) Chalaza
 - (3) Hilum
 - (4) Micropyle
- **54.** In relation to Gross primary productivity and Net primary productivity of an ecosystem, which one of the following statements is **correct** ?
 - (1) Gross primary productivity and Net primary productivity are one and same.
 - (2) There is no relationship between Gross primary productivity and Net primary productivity.
 - (3) Gross primary productivity is always less than net primary productivity.
 - (4) Gross primary productivity is always more than net primary productivity.
- **55.** Which of the following refer to **correct** example(s) of organisms which have evolved due to changes in environment brought about by anthropogenic action ?
 - (a) Darwin's Finches of Galapagos islands.
 - (b) Herbicide resistant weeds.
 - (c) Drug resistant eukaryotes.
 - (d) Man-created breeds of domesticated animals like dogs.
 - (1) (b), (c) and (d)
 - (2) only (d)
 - (3) only (a)
 - (4) (a) and (c)

 $\mathbf{F4}$

- **56.** Identify the **correct** statement with reference to human digestive system.
 - (1) Ileum is a highly coiled part.
 - (2) Vermiform appendix arises from duodenum.
 - (3) Ileum opens into small intestine.
 - (4) Serosa is the innermost layer of the alimentary canal.
- **57.** The product(s) of reaction catalyzed by nitrogenase in root nodules of leguminous plants is/are :
 - (1) Ammonia and oxygen
 - (2) Ammonia and hydrogen
 - (3) Ammonia alone
 - (4) Nitrate alone
- **58.** The transverse section of a plant shows following anatomical features :
 - (a) Large number of scattered vascular bundles surrounded by bundle sheath.
 - (b) Large conspicuous parenchymatous ground tissue.
 - (c) Vascular bundles conjoint and closed.
 - (d) Phloem parenchyma absent.

Identify the category of plant and its part :

- (1) Dicotyledonous stem
- (2) Dicotyledonous root
- (3) Monocotyledonous stem
- (4) Monocotyledonous root
- **59.** Bilaterally symmetrical and acoelomate animals are exemplified by :
 - (1) Aschelminthes
 - (2) Annelida
 - (3) Ctenophora
 - (4) Platyhelminthes
- **60.** Goblet cells of alimentary canal are modified from :
 - (1) Chondrocytes
 - (2) Compound epithelial cells
 - (3) Squamous epithelial cells
 - (4) Columnar epithelial cells

- **61.** Which of the following is **not** an attribute of a population?
 - (1) Mortality
 - (2) Species interaction
 - (3) Sex ratio
 - (4) Natality
- 62. Embryological support for evolution was disapproved by:
 - (1) Charles Darwin
 - (2) Oparin
 - (3) Karl Ernst von Baer
 - (4) Alfred Wallace
- **63.** Which one of the following is the most abundant protein in the animals ?
 - (1) Lectin
 - (2) Insulin
 - (3) Haemoglobin
 - (4) Collagen
- 64. Match the following columns and select the **correct** option.

		Colı	ımn -	I	Column - II	
	(a)	Eosii	nophils	3	(i)	Immune response
	(b)	Baso	phils		(ii)	Phagocytosis
	(c)	Neut	rophil	s	(iii)	Release histaminase, destructive
	(d)	Lym	Lymphocytes			enzymes Release granules containing histamine
		(a)	(b)	(c)	(d)	
	(1)	(i)	(ii)	(iv)	(iii)	
	(2)	(ii)	(i)	(iii)	(iv)	
	(3)	(iii)	(iv)	(ii)	(i)	
	(4)	(iv)	(i)	(ii)	(iii)	
65.				0		ne levels will cause from the graffian

- **65.** Which of the following hormone levels will cause release of ovum (ovulation) from the graffian follicle ?
 - $(1) \qquad {\rm Low\ concentration\ of\ LH}$
 - (2) Low concentration of FSH
 - (3) High concentration of Estrogen
 - (4) High concentration of Progesterone

8

						e	,		
66.		he sequence that controls the copy number of the nked DNA in the vector, is termed :							
	(1)	Palir	ndromi	cseque	ence				
	(2)	Reco	gnitior	n site					
	(3)	Selec	table r	narker					
	(4)	Ori s	ite						
67.			arts w the otl		onsisto	of two generations -			
	(a)	Pollen grains inside the anther							
	(b)	Germinated pollen grain with two male							
		gametes							
	(c)	Seed	Seed inside the fruit						
	(d)	Emb	ryo sao	c inside	e the o	vule			
	(1)	(c) ar	(c) and (d)						
	(2)	(a) aı	(a) and (d)						
	(3)	(a) or	(a) only						
	(4)	(a), (b) and	(c)					
68.		h the ect op		wing c	olum	ns and select the	72.		
		Colu	1mn - 1	I		Column - II			
	(a)	Clost	tridiun	n	(i)	Cyclosporin-A			
		buty	licum						
	(b)	Trick	nodern	ıa	(ii)	Butyric Acid			
		polys	sporun	ı					
	(c)	Mone	ascus		(iii)	Citric Acid	79		
		purp	ureus				73.		
	(d)	Aspe	rgillus	niger	(iv)	Blood cholesterol			
						lowering agent			
		(a)	(b)	(c)	(d)				
	(1)	(i)	(ii)	(iv)	(iii)				
	(2)	(iv)	(iii)	(ii)	(i)				
	(3)	(iii)	(iv)	(ii)	(i)				
	(4)	(ii)	(i)	(iv)	(iii)		74.		

- **69.** The roots that originate from the base of the stem are :
 - (1) Prop roots
 - (2) Lateral roots
 - (3) Fibrous roots
 - (4) Primary roots

- Identify the **wrong** statement with reference to the gene 'I' that controls ABO blood groups.
 - $\begin{array}{ll} (1) & \mbox{ When } I^A \mbox{ and } I^B \mbox{ are present together, they} \\ & \mbox{ express same type of sugar.} \end{array}$
 - (2) Allele 'i' does not produce any sugar.
 - (3) The gene (I) has three alleles.
 - (4) A person will have only two of the three alleles.
- **71.** Which of the following would help in prevention of diuresis ?
 - (1) Atrial natriuretic factor causes vasoconstriction
 - (2) Decrease in secretion of renin by JG cells
 - (3) More water reabsorption due to undersecretion of ADH
 - (4) Reabsorption of Na⁺ and water from renal tubules due to aldosterone
- **72.** Montreal protocol was signed in 1987 for control of :
 - (1) Release of Green House gases
 - (2) Disposal of e-wastes
 - (3) Transport of Genetically modified organisms from one country to another
 - (4) Emission of ozone depleting substances
- 73. Meiotic division of the secondary oocyte is completed:
 - (1) After zygote formation
 - (2) At the time of fusion of a sperm with an ovum
 - (3) Prior to ovulation
 - (4) At the time of copulation
- **74.** By which method was a new breed 'Hisardale' of sheep formed by using Bikaneri ewes and Marino rams ?
 - (1) Cross breeding
 - (2) Inbreeding
 - (3) Out crossing
 - (4) Mutational breeding

fewo	few days because :						
(1)	the head holds a small proportion of a nervous system while the rest is situated along the ventral part of its body.						

(2) the head holds a 1/3rd of a nervous system while the rest is situated along the dorsal part of its body.

If the head of cockroach is removed, it may live for

- (3) the supra-oesophageal ganglia of the cockroach are situated in ventral part of abdomen.
- $(4) \qquad {\rm the \ cockroach \ does \ not \ have \ nervous \ system}.$
- 76. Identify the **incorrect** statement.
 - (1) Sapwood is the innermost secondary xylem and is lighter in colour.
 - (2) Due to deposition of tannins, resins, oils etc., heart wood is dark in colour.
 - (3) Heart wood does not conduct water but gives mechanical support.
 - (4) Sapwood is involved in conduction of water and minerals from root to leaf.
- 77. Select the option including all sexually transmitted diseases.
 - (1) AIDS, Malaria, Filaria
 - (2) Cancer, AIDS, Syphilis
 - (3) Gonorrhoea, Syphilis, Genital herpes
 - (4) Gonorrhoea, Malaria, Genital herpes
- **78.** Identify the **wrong** statement with reference to immunity.
 - (1) Active immunity is quick and gives full response.
 - (2) Foetus receives some antibodies from mother, it is an example for passive immunity.
 - (3) When exposed to antigen (living or dead) antibodies are produced in the host's body. It is called "Active immunity".
 - (4) When ready-made antibodies are directly given, it is called "Passive immunity".

79. Match the following columns and select the **correct** option.

	Colu	ımn -	I	Column - II	
(a)	Bt co	tton		(i)	Gene therapy
(b)	dean	iosine ninase iency		(ii)	Cellular defence
(c)	RNA	i		(iii)	Detection of HIV infection
(d)	PCR			(iv)	Bacillus thuringiensis
	(a)	(b)	(c)	(d)	
(1)	(ii)	(iii)	(iv)	(i)	
(2)	(i)	(ii)	(iii)	(iv)	
(3)	(iv)	(i)	(ii)	(iii)	
(4)	(iii)	(ii)	(i)	(iv)	

80. Which of the following statements is correct?

- (1) Adenine pairs with thymine through three H-bonds.
- (2) Adenine does not pair with thymine.
- (3) Adenine pairs with thymine through two H-bonds.
- (4) Adenine pairs with thymine through one H-bond.
- 81. According to Robert May, the global species diversity is about :
 - (1) 50 million
 - (2) 7 million
 - (3) 1.5 million
 - (4) 20 million
- 82. Secondary metabolites such as nicotine, strychnine and caffeine are produced by plants for their :
 - (1) Defence action
 - (2) Effect on reproduction
 - (3) Nutritive value
 - (4) Growth response

F4 75.

10

						1	1						$\mathbf{F4}$
83.	Whie algae		the fol	llowin	g pair	s is of unicellular	88.		ch the ect op		wing	colum	ns and select the
	(1)			and Vo					Colı	ımn -	I		Column - II
	(2)			nd <i>Spi</i>				(a)	Floa	ting Ri	he	(i)	Located between
	(3)			and S	-			(a)	0 ()			second and	
	(4)	Gen	<i>иит</i> а	nd <i>Gro</i>	acuari	a							seventh ribs
84.	The	enzym	e ente:	rokina	se helj	os in conversion of :		(b)	(b) Acromion (ii) Head of the			Head of the	
	(1)	casei	inogen	into ca	asein								Humerus
	(2)	peps	inogen	into p	epsin			(c)	Scap	ula		(iii)	Clavicle
	(3)	prote	ein into	polyp	eptide	8			-		•,	(°)	
	(4)	tryps	sinoge	n into t	trypsir	1		(d)	Glen	oid cav	/ity	(iv)	Do not connect with the sternum
85.		ch the ect op		wing (colum	ns and select the			(a)	(b)	(c)	(d)	
		Colı	ımn -	I		Column - II		(1)	(iii)	(ii)	(iv)	(i)	
	(a)	6 - 18	5 pairs	of	(i)	Trygon		(2)	(iv)	(iii)	(i)	(ii)	
		gill s	lits					(3)	(ii)	(iv)	(i)	(iii)	
	(b)		Heterocercal (ii) caudal fin		Cyclostomes		(4)	(i)	(iii)	(ii)	(iv)		
	(c)	Air E	Bladder	r	(iii)	Chondrichthyes	89.	Sele	ct the c	correc	e t state	ement.	
	(d)	Poise (a)	on stin (b)	g (c)	(iv) (d)	Osteichthyes		(1)	Insulin acts on pancreatic cells and adipocytes.			creatic cells and	
	(1)	(iv)	(ii)	(iii)	(i)			(2)	Insulin is associated with hyperglycemia.			th hyperglycemia.	
	(2)	(i)	(iv)	(iii)	(ii)			(3)	Glucocorticoids stimulate gluconeogenesis.			te gluconeogenesis.	
	(3)	(ii)	(iii)	(iv)	(i)			(4)	Glucagon is associated with hypoglycemia			0 0	
	(4)	(iii)	(iv)	(i)	(ii)			(1)	Giuo	agoiri	abboe	iatea	, ion ny pogry connu.
86.						litating loss of water rass blades at night	90.						owing conditions in es Mellitus ?
			-	ning is	:			(1)	Keto	nuria	and Gl	ycosur	ria
	(1)		bition					(2)	Rena	al calcı	ıli and	Hyper	rglycaemia
	(2)		molysi					(3)	Urer	nia an	d Keto	nuria	
	(3) (4)		lspirat pressi					(4)	Urer	nia an	d Rena	d Calc	uli
	(4)	1000	presse	ше									
87.				-	-	to Anaerobic sludge eatment ?	91.				-		ect about viroids ?
	(1)	Efflu	ients o	fprima	ary tre	atment		(1)	-			-	otein coat.
	(2)	Activ	vated s	ludge				(2)	They	v have	free D	NA wi	ithout protein coat.
	(3)		ary sl	-				(3)	They	v have	RNA v	vith pr	rotein coat.
	(4)	Floa	ting de	bris				(4)	They	v have	free RI	NA wit	thout protein coat.

$\mathbf{F4}$	12														
92.	Men	del sel	ect as j	pairs, v	which	vere si	varieties did milar except	96.	Flip of :	pers of	Pengu	uins an	ıd Dolp	ohins are examples	
	(1)	1e chai 14	racter	with co	ontras	ting tra	ans :		(1)	Indu	strial	melani	\mathbf{sm}		
	(1)	8							(2)	Natı	aral sel	lection			
	(3)	4							(3)	Adap	Adaptive radiation				
	(4)	2							(4)	Convergent evolution					
93.			ne follo ecies di	0	0	of the g	lobe exhibits	97.		The number of substrate level phosphorylations in one turn of citric acid cycle is :					
	(1)	Him	alayas						(1)	Two					
	(2)		izon foi						(2)	2) Three					
	(3)		tern G		fIndia				(3)	Zero					
	(4)	Mad	agasca	r					(4)	One					
94.		ch the ect op		wing	colum	ns and	d select the	98.	Whi		the f	ollowi	ing st	atements is not	
		Colu	umn -	I		Colu	ımn - II		cori	orrect ?					
	(a)	Plac	enta		(i)	Andr	rogens		(1)					has A and B chains ogen bonds.	
	(b)	Zona	a pelluo	cida	(ii)	Gona	an Chorionic Idotropin		(2)	Genetically engined in <i>E-Coli</i> .			leered	ed insulin is produced	
		Dulk	o-uret	hnol	(iii)	(hCG	;) r of the ovum		(3)		nan i 1sulin.	nsulir	n is s	ynthesised as a	
	(c)	glan		mai	(111)	Цауе	I of the ovum		(4)	The proinsulin has an extra peptide c			extra peptide called		
	(d)	Leyd	lig cell	s	(iv)	Lubr Penis	ication of the	C-peptide.							
		(a)	(b)	(c)	(d)	rem	5	99.		ch the ect op		wing o	colum	ns and select the	
	(1)	(iii)	(ii)	(iv)	(i)					Colı	ımn -	т		Column - II	
	(2)	(ii)	(iii)	(iv)	(i)										
	(3) (4)	(iv) (i)	(iii) (iv)	(i) (ii)	(ii) (iii)				(a)	Orga	un of C	orti	(i)	Connects middle ear and pharynx	
95.	Mate	ch the t		levels	with th		rrect species		(b)	Coch	lea		(ii)	Coiled part of the labyrinth	
	(a)	Fou	rth troj	phic le [.]	vel	(i)	Crow		(c)	Eust	achiar	n tube	(iii)	Attached to the	
	(b)	Seco	nd troj	phic le	vel	(ii)	Vulture							oval window	
	(c)	First	t troph	ic leve	1	(iii)	Rabbit		(d)	Stap	es		(iv)	Located on the	
	(d)	Thir	d tropl	hic leve	el	(iv)	Grass							basilar membrane	
	Sele	ct the o	correc	e t optio	on:									memorane	
		(a)	(b)	(c)	(d)					(a)	(b)	(c)	(d)		
	(1)	(iv)	(iii)	(ii)	(i)				(1)	(iv)	(ii)	(i)	(iii)		
	(2)	(i)	(ii)	(iii)	(iv)				(2)	(i)	(ii)	(iv)	(iii)		
	(3)	(ii)	(iii)	(iv)	(i)			ļ	(3)	(ii)	(iii)	(i)	(iv)		
	(4)	(iii)	(ii)	(i)	(iv)				(4)	(iii)	(i)	(iv)	(ii)		

- 100. Some dividing cells exit the cell cycle and enter vegetative inactive stage. This is called quiescent stage (G_0). This process occurs at the end of :
 - (1) S phase
 - (2) G_2 phase
 - (3) M phase
 - (4) G_1 phase
- 101. The process of growth is maximum during :
 - (1) Senescence
 - (2) Dormancy
 - (3) Log phase
 - (4) Lag phase
- 102. The QRS complex in a standard ECG represents :
 - (1) Depolarisation of ventricles
 - (2) Repolarisation of ventricles
 - (3) Repolarisation of auricles
 - (4) Depolarisation of auricles
- **103.** Bt cotton variety that was developed by the introduction of toxin gene of *Bacillus thuringiensis* (Bt) is resistant to :
 - (1) Plant nematodes
 - (2) Insect predators
 - (3) Insect pests
 - (4) Fungal diseases
- **104.** In which of the following techniques, the embryos are transferred to assist those females who cannot conceive ?
 - (1) ICSI and ZIFT
 - (2) GIFT and ICSI
 - (3) ZIFT and IUT
 - (4) GIFT and ZIFT
- 105. Floridean starch has structure similar to :
 - (1) Mannitol and algin
 - (2) Laminarin and cellulose
 - (3) Starch and cellulose
 - (4) Amylopectin and glycogen

- **106.** Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop.
 - (1) Ethylene
 - (2) Abscisic acid
 - (3) Cytokinin
 - (4) Gibberellin
- **107.** Match the following columns and select the **correct** option.

Column - I Column - II

- (a) Gregarious, polyphagous (i) Asterias pest Adult with radial (b) (ii) Scorpion symmetry and larva with bilateral symmetry Book lungs Ctenoplana (c) (iii) Bioluminescence Locusta (d) (iv) (a) **(b)** (c) (d) (1)(iii) (ii) (i) (iv)
- (2) (ii) (i) (iii) (iv) (3) (i) (iii) (ii) (iv)
- (4) (iv) (i) (ii) (iii)
- **108.** Which of the following statements are **true** for the phylum-Chordata ?
 - (a) In Urochordata notochord extends from head to tail and it is present throughout their life.
 - (b) In Vertebrata notochord is present during the embryonic period only.
 - (c) Central nervous system is dorsal and hollow.
 - (d) Chordata is divided into 3 subphyla : Hemichordata, Tunicata and Cephalochordata.
 - (1) (a) and (b)
 - (2) (b) and (c)
 - (3) (d) and (c)
 - (4) (c) and (a)
- 109. The first phase of translation is :
 - (1) Aminoacylation of tRNA
 - (2) Recognition of an anti-codon
 - (3) Binding of mRNA to ribosome
 - (4) Recognition of DNA molecule

$\mathbf{F4}$

- 110. Identify the basic amino acid from the following.
 - (1) Lysine
 - (2) Valine
 - (3) Tyrosine
 - (4) Glutamic Acid
- **111.** The infectious stage of *Plasmodium* that enters the human body is :
 - (1) Female gametocytes
 - (2) Male gametocytes
 - (3) Trophozoites
 - (4) Sporozoites
- **112.** Identify the **correct** statement with regard to G_1 phase (Gap 1) of interphase.
 - (1) Cell is metabolically active, grows but does not replicate its DNA.
 - (2) Nuclear Division takes place.
 - (3) DNA synthesis or replication takes place.
 - (4) Reorganisation of all cell components takes place.
- **113.** In light reaction, plastoquinone facilitates the transfer of electrons from :
 - (1) PS-I to $NADP^+$
 - (2) PS-I to ATP synthase
 - (3) $PS-II to Cytb_6 f complex$
 - (4) $Cytb_6 f complex to PS-I$
- **114.** The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of :
 - (1) 1 molecule of 6-C compound
 - (2) 1 molecule of 4-C compound and 1 molecule of 2-C compound
 - (3) 2 molecules of 3-C compound
 - (4) 1 molecule of 3-C compound
- **115.** Which is the important site of formation of glycoproteins and glycolipids in eukaryotic cells ?
 - (1) Golgi bodies
 - (2) Polysomes
 - (3) Endoplasmic reticulum
 - (4) Peroxisomes

14

116.	Matc	atch the following :							
	(a)	Inhik activi	itor of	cataly	(i)	Ricin			
	(b)		ess pep	tido bo	nde	(ii)	Malonate		
	. ,				. ,				
	(c)	Cell v fungi	vall m	ateria.	(iii)	Chitin			
	(d)	Secor	ndary r	netabo	olite	(iv)	Collagen		
	Choo	se the	corre	ct opti	on fror	n the f	ollowing:		
		(a)	(b)	(c)	(d)				
	(1)	(iii)	(iv)	(i)	(ii)				
	(2)	(ii)	(ii) (iii) (i) (iv)						
	(3)	(ii)	(iv)	(iii)	(i)				

- (4) (iii) (i) (iv) (ii)
- **117.** Identify the substances having glycosidic bond and peptide bond, respectively in their structure :
 - (1) Cellulose, lecithin
 - (2) Inulin, insulin
 - (3) Chitin, cholesterol
 - (4) Glycerol, trypsin
- **118.** Experimental verification of the chromosomal theory of inheritance was done by :
 - (1) Boveri
 - (2) Morgan
 - (3) Mendel
 - (4) Sutton
- **119.** The specific palindromic sequence which is recognized by EcoRI is :
 - (1) 5' CTTAAG 3'
 - 3' GAATTC 5'
 - (2) 5' GGATCC 3'
 - 3' CCTAGG 5'
 - (3) 5' GAATTC 3' 3' - CTTAAG - 5'
 - (4) 5' GGAACC 3' 3' - CCTTGG - 5'
- **120.** Name the enzyme that facilitates opening of DNA helix during transcription.
 - (1) DNA polymerase
 - (2) RNA polymerase
 - (3) DNA ligase
 - (4) DNA helicase

121. Select the correct match.

(1)	Sickle cell anaemia	-	Autosomal recessive trait, chromosome-11
(2)	Thalassemia	-	X linked
(3)	Haemophilia	-	Y linked
(4)	Phenylketonuria	-	Autosomal dominant trait

- **122.** From his experiments, S.L. Miller produced amino acids by mixing the following in a closed flask :
 - (1) CH_4 , H_2 , NH_3 and water vapor at 600°C
 - (2) CH_3 , H_2 , NH_3 and water vapor at 600°C
 - (3) CH_4 , H_2 , NH_3 and water vapor at 800°C
 - (4) CH_3 , H_2 , NH_4 and water vapor at 800°C
- **123.** Match the following columns and select the **correct** option.

	Colı	ımn -	I	Column - II	
(a)	Pitui	itary g	land	(i)	Grave's disease
(b)	Thyr	oid gla	and	(ii)	Diabetes mellitus
(c)	Adre	nalgla	and	(iii)	Diabetes insipidus
(d)	Pano	reas		(iv)	Addison's disease
	(a)	(b)	(c)	(d)	
	(a)	(0)	(\mathbf{U})	(u)	
(1)	(a) (iii)	(i)	(iv)	(ü) (ii)	
(1) (2)			. ,		
	(iii)	(i)	(iv)	(ii)	
(2)	(iii) (ii)	(i) (i)	(iv) (iv)	(ii) (iii)	

- **124.** Cuboidal epithelium with brush border of microvilli is found in :
 - (1) proximal convoluted tubule of nephron
 - (2) eustachian tube
 - (3) lining of intestine
 - (4) ducts of salivary glands
- 125. Strobili or cones are found in :
 - (1) Marchantia
 - (2) Equisetum
 - (3) Salvinia
 - (4) Pteris

- 126. Snow-blindness in Antarctic region is due to :
 - (1) High reflection of light from snow
 - (2) Damage to retina caused by infra-red rays
 - (3) Freezing of fluids in the eye by low temperature
 - (4) Inflammation of cornea due to high dose of UV-B radiation
- **127.** Match the following diseases with the causative organism and select the **correct** option.

	Colu	1 mn - 1	Column - II		
(a)	Typh	oid		(i)	Wuchereria
(b)	Pneu	imonia	L	(ii)	Plasmodium
(c)	Filar	iasis		(iii)	Salmonella
(d)	Mala	ria		(iv)	Haemophilus
	()	(b)	(c)	(d)	
	(a)	(0)	(0)	(u)	
(1)	(a) (ii)	(i)	(iii)	(u) (iv)	
(1) (2)			. /		
	(ii)	(i)	(iii)	(iv)	
(2)	(ii) (iv)	(i) (i)	(iii) (ii)	(iv) (iii)	

128. Choose the **correct** pair from the following :

(1)	Nucleases -	Separate the two strands of DNA
(2)	Exonucleases -	Make cuts at specific positions within DNA
(3)	Ligases -	Join the two DNA molecules
(4)	Polymerases -	Break the DNA into fragments

- **129.** Which of the following statements about inclusion bodies is **incorrect** ?
 - (1) They lie free in the cytoplasm.
 - (2) These represent reserve material in cytoplasm.
 - (3) They are not bound by any membrane.
 - (4) These are involved in ingestion of food particles.

$\mathbf{F4}$						1							
130.	Select the correct events that occur during							Match the following with respect to meiosis :					
	inspiration.							(a)	Zygo	tene	(i)	Terminalization	
	(a)	b) Contraction of external inter-costal muscles					(b)	Pach	ytene	(ii)	Chiasmata		
	(b)					nter-costal muscles		(c)	Diplo	otene	(iii)	Crossing over	
	(c)						(d)	Diakinesis		(iv)	Synapsis		
	(d)	d) Intra pulmonary pressure increases						Select the correct option from the following:					
	(1)) (a), (b) and (d)							(a)	(d)			
	(2)	only(d)						(1)	(i)	(ii)	(iv)	(iii)	
	(3)) (a) and (b)						(2)	(ii)	(iv)	(iii)	(i) (``)	
	(4)	(c) and (d)						(3) (4)	(iii) (iv)	(iv) (iii)	(i) (ii)	(ii) (i)	
131.	Ray florets have :						135.	In gel electrophoresis, separated DNA fragments can be visualized with the help of :					
	(1)	Hypogynous ovary						 Acetocarmine in UV radiation 					
	(2)	Half inferior ovary						(2)	,				
	(3)	Inferior ovary						(3)	Acetocarmine in bright blue light				
	(4)	Superior ovary						(4)	Ethidium bromide in UV radiation				
132.	Match the organism with its use in biotechnology.						136.	Whie	Which of the following is a natural polymer ?				
	(a) Bacillus				(i)	Cloning vector		(1) polybutadiene					
	thuringiensis							(2) poly (Butadiene-acrylonitrile)					
	(b)	b) Thermus aquaticus			(ii) Construction of		(3)	(3) <i>cis</i> -1,4-polyisoprene					
						first rDNA molecule		(4) poly (Butadiene-styrene)					
							e 137.	On electrolysis of dil.sulphuric acid using Platinum (Pt) electrode, the product obtained at					
	(c)	c) Agrobacterium tumefaciens				DNA polymerase		anode will be :					
	(1)				(\cdot, \cdot)			(1)	(1) H_2S gas				
	(d)) Salmonella typhimurium			(iv)	(iv) Cry proteins		(2)	$\mathrm{SO}_2\mathrm{gas}$				
	Select the correct option from the following :							(3)	Hydrogen gas				
								(4)) Oxygen gas				
	(1)	(a) (iii)	(ii)	(c) (iv)	(u) (i)		138.	An e	eleme	nt has	a bo	dy centered cubic (bcc)	
	(1)	(iii)	(iv)	(iv) (i)	(i) (ii)				structure with a cell edge of 288 pm. The atomic				
	(2)	(ii)	(iv)	(i) (iii)	(i)			radius is :					
	(3)	(iv)	(iv) (iii)	(ii)	(i) (ii)			(1)	4	$\times 288$	pm		
	()				~ /								
133.	Which of the following is not an inhibitory substance governing seed dormancy ?							(2)	(2) $\frac{4}{\sqrt{2}} \times 288 \text{ pm}$				
	(1)	(1) Phenolic acid						(3) $\frac{\sqrt{3}}{4} \times 288 \text{ pm}$					
	(2)	(2) Para-ascorbic acid											
	(3)	Gibberellic acid						(4) $\frac{\sqrt{2}}{4} \times 288 \text{ pm}$					
	(4)	Abscisic acid						(1)	4		r		