G5								2			
1.	If the distance between two consecutive base pair is 0.34 nm and the total number of base pairs of DNA double helix in a typical mammalian cell: 6.6×10^9 bp, then the length of the DNA approximately:										
	(1)	$2.5 \mathrm{m}$	eters								
	(2)	2.2 m	eters								
	(3)	2.7 m	eters								
	(4)	2.0 meters									
2.		erally s cemplif			and ac	oelon	nate animals				
	(1)	Platyl	nelmir	nthes							
	(2)	Asche	lmintl	nes				١			
	(3)	Annel	ida								
	(4)	Cteno	phora								
3.		h the e ct opt		ving c	olumn	s and	d select the				
		Colu	mn - I			Co	lumn - II				
	(a)	Grega pest	rious,	polypł	nagous	Asterias					
	(b)	symm		nd lar	va metry	(ii)	Scorpion				
	(c)	Book	lungs			(iii)	Ctenoplana				
	(d)	Biolu	ninesc	ence		(iv)	Locusta				
		(a)	(b)	(c)	(d)						
	(1)	(iv)	(i)	(ii)	(iii)						
	(2)	(iii)	(ii)	(i)	(iv)						
	(3)	(ii)	(i)	(iii)	(iv)						
	(4)	(i)	(iii)	(ii)	(iv)						
4.				_			ormation of aryotic cells?				
	(1)	Perox	isomes	3							
	(2)	Golgi	bodies								
	(3)	Polyso	omes								
	(4)	Endo	olasmi	c retic	ulum						
5.	The G	RS co	nplex	in a sta	andard	ECG	represents:				
	(1)	Depol	arisat	ion of a	uricles	3					
	(2)	Depol	arisat	ion of v	entricl	.es					
	(3)	Repol	arisati	ion of v	entricl	es					

(4)

Repolarisation of auricles

6. Match the following columns and select the **correct** option.

	I				
	Colu	ımn -	I		Column - II
(a)	Floa	ting Ri	lbs	(i)	Located between second and seventh ribs
(b)	Acro	mion		(ii)	Head of the Humerus
(c)	Scap	ula		(iii)	Clavicle
(d)	Glen	oid cav	vity	(iv)	Do not connect with the sternum
	(a)	(b)	(c)	(d)	
(1)	(i)	(iii)	(ii)	(iv)	
(2)	(iii)	(ii)	(iv)	(i)	
(3)	(iv)	(iii)	(i)	(ii)	
(4)	(ii)	(iv)	(i)	(iii)	

- 7. Experimental verification of the chromosomal theory of inheritance was done by:
 - (1) Sutton
 - (2) Boveri
 - (3) Morgan
 - (4) Mendel
- **8.** Identify the **incorrect** statement.
 - (1) Sapwood is involved in conduction of water and minerals from root to leaf.
 - (2) Sapwood is the innermost secondary xylem and is lighter in colour.
 - (3) Due to deposition of tannins, resins, oils etc., heart wood is dark in colour.
 - (4) Heart wood does not conduct water but gives mechanical support.
- 9. Match the following columns and select the correct option.

	Colu	mn - I			Column - II
(a)	Pituit	ary gl	and	(i)	Grave's disease
(b)	Thyro	oid gla	nd	(ii)	Diabetes mellitus
(c)	Adre	nal gla	nd	(iii)	Diabetes insipidus
(d)	Panci	reas		(iv)	Addison's disease
	(a)	(b)	(c)	(d)	
(1)	(iii)	(ii)	(i)	(iv)	
(2)	(iii)	(i)	(iv)	(ii)	
(3)	(ii)	(i)	(iv)	(iii)	
(4)	(iv)	(iii)	(i)	(ii)	

						;	3		${f G}$ 5			
10.	Mate	ch the	organi	sm wit	h its u	se in biotechnology.	14.	Select the correct events that occur during inspiration.				
	(a)	Baci			(i)	Cloning vector		_				
		thur	ingien	sis				(a)	Contraction of diaphragm			
	(b)	Ther			(ii)	Construction of	(b)	Contraction of external inter-costal muscles				
		aque	iticus			first rDNA molecule		(c)	Pulmonary volume decreases			
	(a)	Acmo	bacter	, i	(iii)	DNA polymerase		(d)	Intra pulmonary pressure increases			
	(c)	_	efacien		(111)	DIVA polymerase		(1)	(c) and (d)			
	(d)	Saln	ıonelle	7.	(iv)	Cry proteins		(2)	(a), (b) and (d)			
	(-)		imurii		()			(3)	only (d)			
	Sele	ct the c	correc	c t optio	on fron	n the following:		(4)	(a) and (b)			
		(a)	(b)	(c)	(d)		15.					
	(1)	(iv) (iii) (i) (ii)							which method was a new breed 'Hisardale' of op formed by using Bikaneri ewes and Marino			
	(2)	(iii)	(ii)	(iv)	(i)			ram				
	(3)	(iii)	(iv)	(i)	(ii)			(1)	Mutational breeding			
	(4)	(ii)	(iv)	(iii)	(i)			(2)	Cross breeding			
11.	Identify the substances having glycosidic bond and							(3)	Inbreeding			
	peptide bond, respectively in their structure:							(4)	Out crossing			
	(1)	Glyc	erol, tı	rypsin			16.	W/b:	ch and of the following is the most should an			
	(2)			ecithir	ı		ı	Which one of the following is the most abundant protein in the animals?				
	(3)		in, ins		_			(1)	Collagen			
	(4)	Chit	in, cho	lestero	ol			(2)	Lectin			
12.	Nam	Name the enzyme that facilitates opening of DNA							Insulin			
		k durin	_	_	on.			(4)	Haemoglobin			
	(1)		helica									
	(2)		\ polyn				17.		many true breeding pea plant varieties did del select as pairs, which were similar except			
	(3) (4)		apolym Aligase						ne character with contrasting traits?			
	(4)	DNA	ungase	3				(1)	2			
13.					is rem	oved, it may live for		(2)	14			
		days be			. . l			(3)	8			
	(1) (2)					ave nervous system. oportion of a nervous		(4)	4			
	(2)	syste	em wh		rest is	s situated along the	18.		body of the ovule is fused within the funicle			
	(3)	the l	nead h	olds a	1/3 rd o	f a nervous system		at:				
		while the rest is situated along the dorsal part of its body.						(1)	Micropyle			
	(4)	_		-	ohage	al ganglia of the		(2)	Nucellus			
	(- /	cock	roach	_	-	in ventral part of		(3)	Chalaza			
		abdo	men.				1	(4)	Hilum			

G5						4						
19.	Whi	ch of th	ne follo	wing i	is corr	ect about viroids?	24.	Whi			_	statements is correct ?
	(1)	They	have	free R	NA wit	thout protein coat.		(1)	Ader H-bo	_	irs w	ith thymine through one
	(2)	They	have	DNA v	with pr	rotein coat.		(2)			irs wi	th thymine through three
	(3)	They	have	free D	NA wi	thout protein coat.		()	H-bo			
	(4)	They	have	RNA v	with pr	rotein coat.		(3)				pair with thymine.
20.		numbe ne turn				l phosphorylations		(4)	Ader H-bo		irs wi	ith thymine through two
	(1)	One	or cru	ric acr	a cycle	16 .	25 .	Mate	ch the	followi	ng wit	h respect to meiosis:
	(2)	Two						(a)	Zygo	tene	(i)	Terminalization
		Thre						(b)	Pach	ytene	(ii)	Chiasmata
	(3)		е					(c)	Diplo	tene	(iii)	Crossing over
	(4)	Zero						(d)	Diak	inesis	(iv)	Synapsis
21.	The	The product(s) of reaction catalyzed by nitrogenase							ct the c	correc	t optio	on from the following:
						plants is/are :			(a)	(b)	(c)	(d)
	(1)	Nitra	ate alo	ne				(1)	(iv)	(iii)	(ii)	(i)
	(2)	Amn	nonia a	and oxy	ygen			(2)	(i)	(ii)	(iv)	(iii)
	(3)	Amn	nonia a	and hy	drogen	L		(3)	(ii)	(iv)	(iii)	(i)
	(4)	Amn	nonia a	lone				(4)	(iii)	(iv)	(i)	(ii)
							26.	Cho	ose the	corre	ct pai	r from the following:
22.		Match the following diseases with the causative organism and select the correct option.							Poly	nerase	·s -	Break the DNA into fragments
	(a)	Colu Typh	ımn - noid	I	(i)	Column - II Wuchereria		(2)	Nucl	eases	-	Separate the two strands of DNA
					.,			(3)	Fyor	ualoos	og	Make cuts at specific
	(b) (c)		ımonia riasis	ı	(ii) (iii)	Plasmodium Salmonella		(3)	Exonucleases -		es-	positions within DNA
							(4)	Ligas	ses	-	Join the two DNA	
	(4)	1/[0]			(iv)	Haemophilus						molecules
	(d)	Mala		(-)								
	(d) (1)	Mala (a) (iii)	(b) (iv)	(c) (i)	(d) (ii)		27.			ption ir	ncludii	ng all sexually transmitted
	(1)	(a) (iii)	(b) (iv)		(d) (ii)		27.	disea	ases.			
	(1) (2)	(a) (iii) (ii)	(b) (iv) (i)	(i) (iii)	(d) (ii) (iv)		27.		ases. Gond		a, Mala	aria, Genital herpes
	(1) (2) (3)	(a) (iii) (ii) (iv)	(b) (iv) (i) (i)	(i) (iii) (ii)	(d) (ii) (iv) (iii)		27.	disea (1)	ases. Gond AIDS	orrhoea	a, Mala aria, F	aria, Genital herpes ilaria
	(1) (2)	(a) (iii) (ii)	(b) (iv) (i)	(i) (iii)	(d) (ii) (iv)		27.	(1) (2)	Gond AIDS Cand	orrhoea S, Mala eer, AII	a, Mala aria, F OS, Sy	aria, Genital herpes ilaria
23.	(1) (2) (3) (4) From	(a) (iii) (ii) (iv) (i) n his ex	(b) (iv) (i) (i) (iii)	(i) (iii) (ii) (ii) ents, S	(d) (ii) (iv) (iii) (iv) (iv)	ller produced amino in a closed flask :	27. 28.	(1) (2) (3) (4) Emb	Gond AIDS Cand Gond	orrhoea S, Mala eer, AII orrhoea gical	a, Mala aria, F OS, Sy a, Sypl	aria, Genital herpes ilaria philis nilis, Genital herpes
23.	(1) (2) (3) (4) From	(a) (iii) (iv) (i) (i) n his exists by minus	(b) (iv) (i) (i) (iii) (perimaxing t	(i) (iii) (ii) (ii) ents, S	(d) (ii) (iv) (iii) (iv) S.L. Milowing	_		(1) (2) (3) (4) Emb	Gond AIDS Cand Gond Oryolo pprove	orrhoea S, Mala eer, AII orrhoea gical	a, Mala aria, F OS, Sy a, Sypl supp	aria, Genital herpes ilaria philis nilis, Genital herpes
23.	(1) (2) (3) (4) From acid	(a) (iii) (iv) (i) (i) n his ex s by mi CH ₃	(b) (iv) (i) (ii) (iii) (xperim ixing to the content of the conten	$\begin{array}{c} \text{(i)} \\ \text{(iii)} \\ \text{(ii)} \\ \text{(ii)} \\ \\ \text{ents, S} \\ \text{he follow} \\ \text{IH}_4 \text{ an} \\ \end{array}$	(d) (ii) (iv) (iii) (iv) S.L. Millowing	in a closed flask :		(1) (2) (3) (4) Emb	Gond AIDS Cand Gond Oryolo pprove	orrhoea S, Mala eer, AII orrhoea gical d by :	a, Mala aria, F OS, Sy a, Sypl supp ace	aria, Genital herpes ilaria philis nilis, Genital herpes
23.	(1) (2) (3) (4) From acid: (1)	(a) (iii) (iv) (i) (i) n his ex s by mi CH ₃ CH ₄	(b) (iv) (i) (ii) (iii) (xperim ixing to the content of the conten	(i) (iii) (ii) (ii) ents, S he follow IH_4 an IH_3 an	(d) (ii) (iv) (iii) (iv) S.L. Millowing d wate	in a closed flask : er vapor at 800°C		(1) (2) (3) (4) Emb disay (1)	Gond AIDS Cand Gond Oryolo pprove	orrhoea S, Mala er, AII orrhoea gical d by: d Wall eles Da	a, Mala aria, F OS, Sy a, Sypl supp ace	ilaria philis

5 G5

> Bt cotton variety that was developed by the introduction of toxin gene of Bacillus thuringiensis

- 29. The roots that originate from the base of the stem are:
 - (1) Primary roots
 - (2)Prop roots
 - (3)Lateral roots
 - (4) Fibrous roots
- 30. In gel electrophoresis, separated DNA fragments can be visualized with the help of:
 - Ethidium bromide in UV radiation (1)
 - Acetocarmine in UV radiation (2)
 - Ethidium bromide in infrared radiation (3)
 - (4) Acetocarmine in bright blue light
- 31. Which of the following hormone levels will cause release of ovum (ovulation) from the graffian follicle?
 - (1) High concentration of Progesterone
 - (2)Low concentration of LH
 - (3)Low concentration of FSH
 - (4) High concentration of Estrogen
- 32. Goblet cells of alimentary canal are modified from:
 - Columnar epithelial cells (1)
 - (2)Chondrocytes
 - (3)Compound epithelial cells
 - **(4)** Squamous epithelial cells
- 33. Snow-blindness in Antarctic region is due to:
 - Inflammation of cornea due to high dose of (1) **UV-B** radiation
 - (2)High reflection of light from snow
 - (3) Damage to retina caused by infra-red rays
 - (4) Freezing of fluids in the eye by low temperature
- Match the following concerning essential elements 34. and their functions in plants:
 - (a) Iron
- Photolysis of water (i)
- (b) Zinc
- (ii) Pollen germination
- (c) Boron (iii) Required for chlorophyll biosynthesis
- (d) Manganese (iv) IAA biosynthesis Select the **correct** option:
 - (a)
- (b)
- (c) (d)

(iii)

(iii)

- (1) (iv) (iii) (ii) (i)
- (2)(iii) (iv)

(ii)

(3)

(4)

- (i) (ii)
- (iv)
 - - (i)

 - (i)
- (iv)

(ii)

(4) 36.

(1)

(2)

(3)

35.

- Ray florets have:
 - Superior ovary (1)

(Bt) is resistant to:

Fungal diseases

Plant nematodes

Insect predators

Insect pests

- (2)Hypogynous ovary
- (3)Half inferior ovary
- (4) Inferior ovary
- **37**. Montreal protocol was signed in 1987 for control of:
 - (1) Emission of ozone depleting substances
 - (2)Release of Green House gases
 - (3)Disposal of e-wastes
 - Transport of Genetically modified organisms (4) from one country to another
- 38. Identify the wrong statement with regard to Restriction Enzymes.
 - They cut the strand of DNA at palindromic (1)
 - (2)They are useful in genetic engineering.
 - (3)Sticky ends can be joined by using DNA ligases.
 - Each restriction enzyme functions by (4) inspecting the length of a DNA sequence.
- 39. The infectious stage of *Plasmodium* that enters the human body is:
 - (1) **Sporozoites**
 - (2)Female gametocytes
 - (3)Male gametocytes
 - (4) Trophozoites
- **40.** Meiotic division of the secondary oocyte is completed:
 - (1) At the time of copulation
 - After zygote formation (2)
 - At the time of fusion of a sperm with an ovum
 - (4) Prior to ovulation

- **41.** The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of :
 - (1) 1 molecule of 3-C compound
 - (2) 1 molecule of 6-C compound
 - $\begin{array}{cc} \text{(3)} & 1 \, \text{molecule of 4-C compound and 1 molecule} \\ & \text{of 2-C compound} \end{array}$
 - (4) 2 molecules of 3-C compound
- **42.** Which of the following statements are **true** for the phylum-Chordata?
 - (a) In Urochordata notochord extends from head to tail and it is present throughout their life.
 - (b) In Vertebrata notochord is present during the embryonic period only.
 - (c) Central nervous system is dorsal and hollow.
 - (d) Chordata is divided into 3 subphyla: Hemichordata, Tunicata and Cephalochordata.
 - (1) (c) and (a)
 - (2) (a) and (b)
 - (3) (b) and (c)
 - (4) (d) and (c)

(1)

(2)

(3)

(4)

(ii)

(i)

(iv)

(iii)

43. Match the following columns and select the correct option.

Column - II Column - I Clostridium Cyclosporin-A (a) (i) butylicum (b) Trichoderma**Butyric** Acid (ii) polysporum Monascus Citric Acid (c) (iii) purpureus (d) Aspergillus niger (iv) Blood cholesterol lowering agent (a) **(b) (c)** (d)

44. Which of the following pairs is of unicellular algae?

(iv)

(iv)

(ii)

(ii)

(iii)

(iii)

(i)

(i)

- (1) Gelidium and Gracilaria
- (2) Anabaena and Volvox

(i)

(ii)

(iii)

(iv)

- (3) Chlorella and Spirulina
- (4) Laminaria and Sargassum

- **45.** In light reaction, plastoquinone facilitates the transfer of electrons from :
 - (1) Cytb₆f complex to PS-I
 - (2) PS-I to NADP+
 - (3) PS-I to ATP synthase
 - (4) PS-II to Cytb₆f complex
- **46.** Presence of which of the following conditions in urine are indicative of Diabetes Mellitus?
 - (1) Uremia and Renal Calculi
 - (2) Ketonuria and Glycosuria
 - (3) Renal calculi and Hyperglycaemia
 - (4) Uremia and Ketonuria
- **47.** Secondary metabolites such as nicotine, strychnine and caffeine are produced by plants for their:
 - (1) Growth response
 - (2) Defence action
 - (3) Effect on reproduction
 - (4) Nutritive value
- **48.** Which of the following would help in prevention of diuresis?
 - (1) Reabsorption of Na^+ and water from renal tubules due to aldosterone
 - (2) Atrial natriuretic factor causes vasoconstriction
 - (3) Decrease in secretion of renin by JG cells
 - (4) More water reabsorption due to undersecretion of ADH
- **49.** Select the **correct** match.
 - (1) Phenylketonuria Autosomal dominant trait
 - (2) Sickle cell anaemia Autosomal recessive trait, chromosome-11
 - (3) Thalassemia X linked
 - (4) Haemophilia Ylinked
- **50.** Which of the following is **not** an attribute of a population?
 - (1) Natality
 - (2) Mortality
 - (3) Species interaction
 - (4) Sex ratio

- **51.** Which of the following statements about inclusion bodies is **incorrect**?
 - (1) These are involved in ingestion of food particles.
 - (2) They lie free in the cytoplasm.
 - (3) These represent reserve material in cytoplasm.
 - (4) They are not bound by any membrane.
- **52.** The transverse section of a plant shows following anatomical features:
 - (a) Large number of scattered vascular bundles surrounded by bundle sheath.
 - (b) Large conspicuous parenchymatous ground tissue.
 - (c) Vascular bundles conjoint and closed.
 - (d) Phloem parenchyma absent.

Identify the category of plant and its part:

- (1) Monocotyledonous root
- (2) Dicotyledonous stem
- (3) Dicotyledonous root
- (4) Monocotyledonous stem
- **53.** In relation to Gross primary productivity and Net primary productivity of an ecosystem, which one of the following statements is **correct**?
 - (1) Gross primary productivity is always more than net primary productivity.
 - (2) Gross primary productivity and Net primary productivity are one and same.
 - (3) There is no relationship between Gross primary productivity and Net primary productivity.
 - (4) Gross primary productivity is always less than net primary productivity.
- **54.** In water hyacinth and water lily, pollination takes place by :
 - (1) water currents only
 - (2) wind and water
 - (3) insects and water
 - (4) insects or wind
- **55.** Which of the following is put into Anaerobic sludge digester for further sewage treatment?
 - (1) Floating debris
 - (2) Effluents of primary treatment
 - (3) Activated sludge
 - (4) Primary sludge

- **56.** The process responsible for facilitating loss of water in liquid form from the tip of grass blades at night and in early morning is:
 - (1) Root pressure
 - (2) Imbibition

7

- (3) Plasmolysis
- (4) Transpiration
- **57.** Cuboidal epithelium with brush border of microvilli is found in :
 - (1) ducts of salivary glands
 - (2) proximal convoluted tubule of nephron
 - (3) eustachian tube
 - (4) lining of intestine
- **58.** Select the **correct** statement.
 - (1) Glucagon is associated with hypoglycemia.
 - (2) Insulin acts on pancreatic cells and adipocytes.
 - (3) Insulin is associated with hyperglycemia.
 - (4) Glucocorticoids stimulate gluconeogenesis.
- **59.** Which of the following is **not** an inhibitory substance governing seed dormancy?
 - (1) Abscisic acid
 - (2) Phenolic acid
 - (3) Para-ascorbic acid
 - (4) Gibberellic acid
- **60.** According to Robert May, the global species diversity is about :
 - (1) 20 million
 - (2) 50 million
 - (3) 7 million
 - (4) 1.5 million

G5							8	3		
61.		ch the t nples i					rrect species	66.		tify the correct statement with reference to an digestive system.
	(a)	Four	th trop	phic le	vel	(i)	Crow		(1)	Serosa is the innermost layer of the
	(b)	Seco	nd trop	phic lev	vel	(ii)	Vulture		(1)	alimentary canal.
	(c)	Firs	t troph	ic leve	1	(iii)	Rabbit		(2)	Ileum is a highly coiled part.
	(d)	Thir	d tropl	hic leve	el	(iv)	Grass		(2)	
	` '	ct the	_			. ,			(3)	Vermiform appendix arises from duodenum
		(a)	(b)	(c)	(d)				(4)	Ileum opens into small intestine.
	(1)	(iii)	(ii)	(i)	(iv)					
	(2)	(iv)	(iii)	(ii)	(i)			C7	T1	high of the fallowing to above and a sure the sure house
	(3)	(i)	(ii)	(iii)	(iv)			67.		hich of the following techniques, the embryos ransferred to assist those females who cannot
	(4)	(ii)	(iii)	(iv)	(i)					eive?
62.		first p							(1)	GIFT and ZIFT
	(1) Recognition of DNA molecule(2) Aminoacylation of tRNA								(2)	ICSI and ZIFT
	(3)									CLDW LLCCL
	(4)	Binding of mRNA to ribosome							(3)	GIFT and ICSI
63.	Stro	bili or	cones	are fou	ınd in :				(4)	ZIFT and IUT
	(1)	(1) Pteris								
	(2)	(2) Marchantia								plant parts which consist of two generations
	(3)	·							one v	within the other:
	(4)	Salv	inia						(a)	Pollen grains inside the anther
64.	Match the following columns and select the correct option.								(b)	Germinated pollen grain with two male
			ımn -	I		Column - II				gametes
	(a)	6 - 1 gill s	5 pairs slits	sof	(i)	Trygon Cyclostomes			(c)	Seed inside the fruit
	(b)		erocerc	al	(ii)				(d)	Embryo sac inside the ovule
			lal fin		/ ***\	O1	1 : 1 :1		(1)	(a), (b) and (c)
	(c)		Bladde		(iii)		ndrichthyes		(2)	(c) and (d)
	(d)		on stin		(iv)	Oste	ichthyes			
	(1)	(a)	(b)	(c)	(d)				(3)	(a) and (d)
	(1)	(iii)	(iv)	(i)	(ii)				(4)	(a) only
	(2) (3)	(iv) (i)	(ii) (iv)	(iii) (iii)	(i) (ii)					
	(4)	(ii)	(iii)	(iv)	(i)			69.	Dies	olution of the synaptonemal complex occurs
0=						11	1 1 ,	05.	duri	
65.	vege	tative	inactiv	ve stag	e. This	siscal	ele and enter led quiescent ne end of :		(1)	Zygotene
	(1)	$G_1 p$		_					(2)	Diplotene
	(2)	Sph							(3)	Leptotene
	(3)	$G_2 p$								
	(4)	Mpł	nase						(4)	Pachytene

Match the following columns and select the 70. correct option.

	Colu	ımn -	I		Column - II		
(a)	Orga	n of C	orti	(i)	Connects middle		
					ear and pharynx		
(b)	Coch	lea		(ii)	Coiled part of the		
					labyrinth		
(c)	Eust	achiar	tube	(iii)	Attached to the		
					oval window		
(d)	Stap	es		(iv)	Located on the		
					basilar		
					membrane		
	(a)	(b)	(c)	(d)			
(1)	(iii)	(i)	(iv)	(ii)			
(2)	(iv)	(ii)	(i)	(iii)			
(3)	(i)	(ii)	(iv)	(iii)			
(4)	(ii)	(iii)	(i)	(iv)			

- The ovary is half inferior in: 71.
 - Mustard (1)
 - (2)Sunflower
 - (3)Plum
 - (4)Brinjal
- **72**. Identify the basic amino acid from the following.
 - Glutamic Acid (1)
 - (2)Lysine
 - (3)Valine
 - Tyrosine
- **73.** Match the following columns and select the correct option.

correct op them.											
	Colu	ımn -	I	Column - II							
(a)	Eosii	nophils	3	(i)	Immune response						
(b)	Baso	phils		(ii)	Phagocytosis						
(c)	Neut	rophil	s	(iii)	Release						
					histaminase,						
					destructive						
					enzymes						
(d)	Lym	phocyt	es	(iv)	Release granules						
					containing						
					histamine						
	(a)	(b)	(c)	(d)							
(1)	(iv)	(i)	(ii)	(iii)							
(2)	(i)	(ii)	(iv)	(iii)							
(3)	(ii)	(i)	(iii)	(iv)							
(4)	(iii)	(iv)	(ii)	(i)							

Match the following:

(d)

- (a) Inhibitor of catalytic (i) Ricin activity
- Possess peptide bonds (ii)Malonate (b)
- (c) Cell wall material in fungi
- (iii) Chitin

Collagen

(iv)

Secondary metabolite Choose the **correct** option from the following:

	(a)	(b)	(c)	(d)
(1)	(iii)	(i)	(iv)	(ii)
(2)	(iii)	(iv)	(i)	(ii)
(3)	(ii)	(iii)	(i)	(iv)
(4)	(ii)	(iv)	(iii)	(i)

- **75.** Identify the correct statement with regard to G₁ phase (Gap 1) of interphase.
 - Reorganisation of all cell components takes
 - Cell is metabolically active, grows but does not replicate its DNA.
 - (3)Nuclear Division takes place.
 - DNA synthesis or replication takes place.
- **76.** Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop.
 - Gibberellin (1)
 - (2)Ethylene
 - (3)Abscisic acid
 - (4) Cytokinin
- 77. Identify the **wrong** statement with reference to the gene 'I' that controls ABO blood groups.
 - A person will have only two of the three
 - When I^A and I^B are present together, they (2)express same type of sugar.
 - Allele 'i' does not produce any sugar. (3)
 - The gene (I) has three alleles.
- Identify the **wrong** statement with reference to immunity.
 - When ready-made antibodies are directly given, it is called "Passive immunity".
 - (2)Active immunity is quick and gives full
 - Foetus receives some antibodies from mother, it is an example for passive immunity.
 - (4) When exposed to antigen (living or dead) antibodies are produced in the host's body. It is called "Active immunity".

G510 **79**. The enzyme enterokinase helps in conversion of: trypsinogen into trypsin (1) (2)caseinogen into casein (3)pepsinogen into pepsin (4) protein into polypeptides

- 80. The specific palindromic sequence which is recognized by EcoRI is:
 - 5' GGAACC 3'
 - 3' CCTTGG 5'
 - 5' CTTAAG 3' (2)
 - 3' GAATTC 5'
 - (3)5' - GGATCC - 3'
 - 3' CCTAGG 5'
 - (4) 5' - GAATTC - 3'
 - 3' CTTAAG 5'
- Match the following columns and select the 81. correct option.

Column - I Column - II (a) Bt cotton (i) Gene therapy (b) Adenosine (ii)Cellular defence deaminase deficiency Detection of HIV (c) RNAi (iii) infection (d) **PCR** (iv) Bacillusthuringiensis (a) (b) **(c)** (d) (1) (iii) (ii) (i) (iv) (2)(ii) (iv) (i) (iii) (3)(i) (ii)(iii) (iv)

82. Floridean starch has structure similar to:

(ii)

(iii)

- Amylopectin and glycogen (1)
- (2)Mannitol and algin

(i)

(iv)

(4)

- (3)Laminarin and cellulose
- Starch and cellulose
- 83. Which of the following statements is not correct?
 - (1) The proinsulin has an extra peptide called C-peptide.
 - The functional insulin has A and B chains (2)linked together by hydrogen bonds.
 - Genetically engineered insulin is produced (3)in *E-Coli*.
 - In man insulin is synthesised as a (4) proinsulin.

- 84. Flippers of Penguins and Dolphins are examples
 - (1) Convergent evolution
 - Industrial melanism (2)
 - (3)Natural selection
 - (4) Adaptive radiation
- **85.** Which of the following refer to **correct** example(s) of organisms which have evolved due to changes in environment brought about by anthropogenic action?
 - Darwin's Finches of Galapagos islands. (a)
 - (b) Herbicide resistant weeds.
 - (c) Drug resistant eukaryotes.
 - Man-created breeds of domesticated animals (d) like dogs.
 - (1) (a) and (c)
 - (2)(b), (c) and (d)
 - (3)only (d)
 - (4) only (a)
- 86. Identify the **wrong** statement with reference to transport of oxygen.
 - Partial pressure of CO₂ can interfere with O_2 binding with haemoglobin.
 - Higher H⁺ conc. in alveoli favours the (2)formation of oxyhaemoglobin.
 - Low pCO2 in alveoli favours the formation (3)of oxyhaemoglobin.
 - (4) Binding of oxygen with haemoglobin is mainly related to partial pressure of O_2 .
- 87. The process of growth is maximum during:
 - (1) Lag phase
 - (2)Senescence
 - (3)Dormancy
 - (4) Log phase
- 88. Which of the following regions of the globe exhibits highest species diversity?
 - Madagascar (1)
 - (2)Himalayas
 - (3)Amazon forests
 - Western Ghats of India (4)

- **89.** The sequence that controls the copy number of the linked DNA in the vector, is termed:
 - (1) Ori site
 - (2) Palindromic sequence
 - (3) Recognition site
 - (4) Selectable marker
- **90.** Match the following columns and select the **correct** option.

Column - I

Column - II

- (a) Placenta
- (i) Androgens
- (b) Zona pellucida
- (ii) Human Chorionic Gonadotropin (hCG)
- (c) Bulbo-urethral glands
- (iii) Layer of the ovum
- (d) Leydig cells
- (iv) Lubrication of the Penis
- (a) (b) (c) (d)
- (1) (i) (iv) (ii) (iii)
- (2) (iii) (ii) (iv) (i)
- $(3) \quad (ii) \quad (iii) \quad (iv) \quad (i)$
- (4) (iv) (iii) (i) (ii)
- **91.** Sucrose on hydrolysis gives:
 - (1) α -D-Glucose + β -D-Glucose
 - (2) α -D-Glucose + β -D-Fructose
 - (3) α -D-Fructose + β-D-Fructose
 - (4) β -D-Glucose + α -D-Fructose
- **92.** Elimination reaction of 2-Bromo-pentane to form pent-2-ene is:
 - (a) β-Elimination reaction
 - (b) Follows Zaitsev rule
 - (c) Dehydrohalogenation reaction
 - (d) Dehydration reaction
 - (1) (a), (c), (d)
 - (2) (b), (c), (d)
 - (3) (a), (b), (d)
 - (4) (a), (b), (c)
- 93. The number of Faradays(F) required to produce 20 g of calcium from molten $CaCl_2$ (Atomic mass of Ca = 40 g mol⁻¹) is:
 - (1) 2
 - (2) 3
 - (3) 4
 - (4) 1

- **94.** An element has a body centered cubic (bcc) structure with a cell edge of 288 pm. The atomic radius is:
 - $(1) \qquad \frac{\sqrt{2}}{4} \times 288 \text{ pm}$
 - (2) $\frac{4}{\sqrt{3}} \times 288 \text{ pm}$
 - (3) $\frac{4}{\sqrt{2}} \times 288 \text{ pm}$
 - (4) $\frac{\sqrt{3}}{4} \times 288 \text{ pm}$
- **95.** HCl was passed through a solution of CaCl₂, MgCl₂ and NaCl. Which of the following compound(s) crystallise(s)?
 - (1) Only NaCl
 - (2) Only MgCl₂
 - (3) NaCl, MgCl₂ and CaCl₂
 - (4) Both MgCl₂ and CaCl₂
- 96. Find out the solubility of Ni(OH)₂ in 0.1 M NaOH. Given that the ionic product of Ni(OH)₂ is 2×10^{-15} .
 - (1) $2 \times 10^{-8} \,\mathrm{M}$
 - (2) $1 \times 10^{-13} \,\mathrm{M}$
 - (3) $1 \times 10^8 \,\mathrm{M}$
 - (4) $2 \times 10^{-13} \,\mathrm{M}$
- 97. For the reaction, $2Cl(g) \rightarrow Cl_2(g)$, the **correct** option is :
 - (1) $\Delta_r H > 0$ and $\Delta_r S < 0$
 - (2) $\Delta_r H < 0$ and $\Delta_r S > 0$
 - (3) $\Delta_{\rm r} H < 0 \text{ and } \Delta_{\rm r} S < 0$
 - (4) $\Delta_r H > 0$ and $\Delta_r S > 0$
- **98.** Which of the following is the **correct** order of increasing field strength of ligands to form coordination compounds?
 - (1) $SCN^- < F^- < CN^- < C_2O_4^{2-}$
 - (2) $F^- < SCN^- < C_2O_4^{2-} < CN^-$
 - (3) $CN^- < C_2O_4^{2-} < SCN^- < F^-$
 - (4) $SCN^- < F^- < C_2O_4^{2-} < CN^-$
- 99. The calculated spin only magnetic moment of Cr^{2+} ion is:
 - (1) 4.90 BM
 - (2) 5.92 BM
 - (3) 2.84 BM
 - (4) 3.87 BM

- **100.** Which of the following set of molecules will have zero dipole moment?
 - (1) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
 - (2) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene
 - (3) Boron trifluoride, beryllium difluoride, carbon dioxide, 1,4-dichlorobenzene
 - (4) Ammonia, beryllium difluoride, water, 1.4-dichlorobenzene
- 101. The following metal ion activates many enzymes, participates in the oxidation of glucose to produce ATP and with Na, is responsible for the transmission of nerve signals.
 - (1) Copper
 - (2) Calcium
 - (3) Potassium
 - (4) Iron
- **102.** An alkene on ozonolysis gives methanal as one of the product. Its structure is:

$$\begin{array}{c} \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3 \\ \end{array} \tag{1}$$

$$CH_2-CH=CH_2$$
(2)

$$\begin{array}{cccc} & & \text{CH}_2\text{CH}_2\text{CH}_3 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\$$

$$CH = CH - CH_3$$
(4)

- 103. The rate constant for a first order reaction is $4.606 \times 10^{-3} \text{ s}^{-1}$. The time required to reduce 2.0 g of the reactant to 0.2 g is:
 - (1) 200 s
 - (2) 500 s
 - (3) 1000 s
 - (4) 100 s
- **104.** Reaction between acetone and methylmagnesium chloride followed by hydrolysis will give :
 - (1) Sec. butyl alcohol
 - (2) Tert. butyl alcohol
 - (3) Isobutyl alcohol
 - (4) Isopropyl alcohol
- **105.** Which of the following is a natural polymer?
 - (1) poly (Butadiene-styrene)
 - (2) polybutadiene
 - (3) poly (Butadiene-acrylonitrile)
 - (4) *cis*-1,4-polyisoprene
- **106.** Identify the **correct** statements from the following:
 - (a) $CO_2(g)$ is used as refrigerant for ice-cream and frozen food.
 - (b) The structure of C_{60} contains twelve six carbon rings and twenty five carbon rings.
 - (c) ZSM-5, a type of zeolite, is used to convert alcohols into gasoline.
 - (d) CO is colorless and odourless gas.
 - (1) (a) and (c) only
 - (2) (b) and (c) only
 - (3) (c) and (d) only
 - (4) (a), (b) and (c) only
- **107.** The correct option for free expansion of an ideal gas under adiabatic condition is:
 - (1) q=0, $\Delta T < 0$ and w > 0
 - (2) $q < 0, \Delta T = 0 \text{ and } w = 0$
 - (3) $q > 0, \Delta T > 0 \text{ and } w > 0$
 - (4) $q = 0, \Delta T = 0 \text{ and } w = 0$