Subject: DIPLOMA IN AGRICULTURE ENGG.

(Booklet Number)

Duration: 2 Hours

Full Marks: 100

INSTRUCTIONS

- 1. All questions are of objective type having four answer options for each. Only one option is correct. Correct answer will carry full marks 1. In case of incorrect answer or any combination of more than one answer. ¼ marks will be deducted.
- Questions must be answered on OMR sheet by darkening the appropriate bubble marked
 A. B, C or D.
- 3. Use only **Black/Blue ball point pen** to mark the answer by complete filling up of the respective bubbles.
- 4. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
- 5. Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
- 6. Write your name (in block letter), name of the examination centre and put your full signature in appropriate boxes in the OMR
- 7. The OMR is liable to become invalid if there is any mistake in filling the correct bubbles for question booklet number roll number or if there is any discrepancy in the name/signature of the candidate, name of the examination centre. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
- 8. Candidates are not allowed to carry any written or printed material, calculator, pendocu-pen, log table, wristwatch, any communication device like mobile phones etc. inside the examination hall. Any candidate found with such items will be reported against & his/her candidature will be summarily cancelled.
- 9. Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
- 10. Hand over the OMR to the invigilator before leaving the Examination Hall.

MATHEMATICS

- 1. Choose the correct one:
 - (A) Every non-singular matrix is orthogonal.
 - (B) Every orthogonal matrix is invertible.
 - Every orthogonal matrix is symmetric. (C)
 - (D) Every orthogonal matrix is skew symmetric.
- 2. If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A^{100} is equal to
 - $(A) 2^{100}.A$

(B) 2⁹⁹. A

(C) 100A

- (D) 99A
- If $\alpha = \begin{vmatrix} a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c \end{vmatrix}$ and $\beta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ then 3.

- The matrix $A = \frac{1}{3} \begin{bmatrix} a & 2 & 2 \\ 2 & 1 & b \\ 2 & c & 1 \end{bmatrix}$ obeys $AA^T = I_3$ Then

 A) a = b = c = IC) a = a = b4.

(A)
$$a = b = c = 1$$

(B)
$$a = 1, b = c = -2.$$

(C)
$$a = 2, b = 1, c = -1$$

(D)
$$a = 0, b = 1, c = 2$$

- If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$. then $\vec{a} \cdot (\vec{b} \times \vec{c}) =$ 5.
 - (A) a non-null vector

(B) = 1

(C) -1

(D) $|\vec{a}| |\vec{b}| |\vec{c}|$

JELET_Agriculture Engg.

6. The position vector of the points A. B. C. D are $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 3\hat{j}$, $3\hat{i} + 5\hat{j} - 2\hat{k}$ and $\hat{k} - \hat{j}$ respectively.

Then \overrightarrow{AB} and \overrightarrow{CD} are

- (A) perpendicular to each other
- (B) parallel to each other.
- (C) inclined at an angle 60°
- (D) inclined at an angle 45°
- 7. If $u = \frac{x^2 + y^2}{\sqrt{x + y}}$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ku$, where k = 1
 - (A) 2

(B) $\frac{1}{2}$

(C) $\frac{3}{2}$

- (D) 1
- 8. If H = f(y z, z x, x y), then $\frac{\partial H}{\partial x} + \frac{\partial H}{\partial y} = \frac{\partial H}{\partial z}$
 - (A) 0

(B) f

(C) 2f

- (D) $\frac{1}{2}$ f
- 9. $f(x, y) = \sin^{-1}\frac{y}{x} + \tan^{-1}\frac{x}{y}, \text{ then } xf_x + yf_y \text{ is}$
 - (A) 1

(B) 2

(C) 3

- (D) = 0
- 10. The order of the differential equation associated with the parametric equation $y = A + B \log_e x$, where A and B are parameters, is
 - (A) 4

(B) 3

(C) 2

(D) 1

The integral curve of the differential equation $(y - x) \frac{dy}{dx} = 1$, passes through (0, 0) and 11. $(\alpha, 1)$.

Then $\alpha =$

(Λ) 2 -e⁻¹

(B) $1-e^{-1}$

(C) e^{-1}

- (D) 1+ e
- The solution of the differential equation $\frac{dy}{dx} = \frac{1 + y^2}{1 + y^2}$ is
 - (A) $y = \tan^{-1} x + c$

(B) y - x = c (1 + xy)

(C) $x = \tan^{-1} y + c$

(D) $\tan xy = c$

(where c is arbitrary constant)

- Integrating factor of the differential equation $\cos x \frac{dy}{dy} + y \sin x = 1$ is 13.
 - (A) $\cos x$

- (C) $\sec x$
- (B) tan x
- The complementary function of $\frac{d^2y}{dx^2}$ + 4y = 2e^y is
 - (A) $Ae^{2x} + Be^{-2x}$

(B) $A \cos x + B \sin x$

(C) $Ae^x + Be^{-x}$

- (D) A $\cos 2x + B \sin 2x$
- Three integers are chosen at random from the first 20 integers. The probability that their 15. product is even, is
 - (A) $\frac{2}{19}$

(B) $\frac{17}{19}$

(C) $\frac{3}{19}$

(D) $\frac{4}{19}$

16. Events A. B. C are mutually exclusive such that $P(A) = \frac{3x+1}{3}$. $P(B) = \frac{1-x}{4}$. $P(C) = \frac{1-2x}{2}$.

Then x lies in the interval

(A) [0, 1]

(B) $\left[\frac{1}{3}, \frac{2}{3}\right]$

(C) $\left[\frac{1}{3}, \frac{1}{2}\right]$

- (D) $\left[\frac{1}{3}, \frac{13}{3}\right]$
- 17. Taking n=4, by Simpson's $1/3^{rd}$ rule, the approximate value of $\int_{0}^{4} 2^{x} dx =$
 - (A) $\frac{64}{3}$

(B) $\frac{62}{3}$

(C) $\frac{61}{3}$

- (D) $\frac{65}{3}$
- 18. The root upto the first approximation of the equation $x^3 + 2x 1 = 0$ in (0, 1) by Regula Falsi method is given by
 - (A) 1

 $\frac{1}{2}$ (B) $\frac{1}{2}$

(C) $\frac{1}{3}$

- (D) $\frac{1}{4}$
- 19. The value of $\sqrt{3}$ correct to two decimal places by bisection method is
 - (A) 1.63

(B) 1.65

(C) 1.64

(D) 1.62

- 20. $(1 + \Delta)(1 \nabla) \equiv$
 - (A) 0

(B) 1

(C) ∆-∇

(D) $\nabla - \Delta$

[With usual symbols]

ELECTRICAL TECHNOLOGY

21	. Kii	rchhoff's laws are valid for				
	(Λ) linear circuits only				
	(B)	non-linear circuits only				
	(C)	neither linear nor non-linear circ	cuits			
	(D)					
22.	. A imp	delta connection of resistances of cach arm of the equivale	contains thro	ee equal impedances of 60 Ω . The ection will be		
	(A)		(B)			
	(C)	30 Ω	(D)	40 🗘		
23.	The Wh	reactance offered by a capacitor to at will be the reactance if the frequency	an alternation	ng current of frequency 50 Hz is 20 Ω . ased to 100 Hz ?		
	(A)	2.5 Ω	(B)	5 Ω		
	(C)	10 Ω	(D)	15 Ω		
24.	Lam	inated cores are used in power tran	sformers to i	educe		
	(A)	eddy loss	(B)	hysteræsis doss		
	(C)	copper loss	: (D),	current loss		
		and the second second				
25.	Λ ca	pacitor start, capacitor run single p	hase induction	on motor is basically a		
		AC series motor	(B)	DC series motor		
	(C)	2 phase induction motor	(D)	3 phase induction motor		
26.	A motor can be easily identified as a DC motor by looking at its					
	(A)	frame	(B)	shaft		
	(C)	commutator	(D)	stator		
27.	Direc	et-on-line starters are not suggested	for starting 1	aron DC motors becomes		
	(A)	the motor may run away	in marting i	arge De motors because		
	(B)	the starting torque becomes very lo	ow.			
	(C)	the motor may start in reverse dire				
	(D)	the starting current will be enormo				
JELE	ET_Ag	riculture Engg.	7			
			•	A		

28.	Con	ductivity is analogous to			
	(A)	retentivity	(B)	resistivity
	(C)	permeability	(D)	inductance
29.	Whi	ch of the following is not a star	ndard voltage f	or ti	ransmission of electrical power?
	(A)	132 KV	(B) (66 KV
	(C)	33 KV	(D) :	20 KV
30.	The	braking system of energy meter	basically cons	sists	of`a
	(A)	mechanical brake	(B) j	olugging brake
	(C)	regenerative brake	. (D) j	permanent magnet
31.	Whi	ch of the following is an integra	ating instrumer	nt?	
	(A)	Ammeter	(B) 1	Voltmeter
	(C)	Galvanometer	(1)	ا (کر	inergy meter
32.	The	power factor of an R-C circuit i	s ,		; >
	(A)	often zero	(\mathbf{B})	ŀ	between 0 and 1
	(C)	always 1	(D) مختورة محمدة	b	between 0 and -1
33.	SMP	S is used for	()		
	(A)	obtaining controlled AC power	r supply		
	(B)	obtaining controlled DC power	r supply		
	(C)	storing DC power			
	(D)	controlled switching between	various power	sup	plies
34.	Colo	ur code for the phase and the ne	cutral in 230 V	АC	supply is
	(A)	Black and green	(B)	R	ted and green
	(C)	Red and black	(D)	R	led and blue
35.	Illum	ination level required for precis	sion work is of	the	order of
	(A)	$20 \text{ to } 50 \text{ lm/m}^2$	(B)	5	0 to 100 lm/m ²
	(C)	150 to 200 lm/m^2	(D)	5	00 to 1000 lm/m ²
JELI	ET_Ag	riculture Engg.	8		

COMPUTER APPLICATION

30	5. Info	ormation about the first p	partition of the logical-address space of a process is kept in th	
	(Λ)	global descriptor table	(B) local descriptor table	
	(C)	page table	(D) process control block	
37	. The	performance of cache n	nemory is frequently measured in terms of a quantity called	
	(A)	page fault	(B) page replacement	
	(C)	hit ratio	(B) page replacement (D) number of bits per track	
38	. A typ	pical file control block o	loes not contain	
	(A)	file permissions	(B) file size	
	(C)	file data blocks	(D) file name	
39.	What	is the 9's complement	form of (12389) ₁₀ ?	
	(A)	87610	(B) 87611	
	(C)	110011	(D) None of these	
40.	The e	quivalent octal number	of the hexadecimal number F3A7C2 is	
	(A)	(74723702) ₈		
	(C)	(74723700) ₈	(B) (74723802) ₈	
41.	The ec	quivalent binary number	(B) (74723802) (D) (74728702) ₈ of (0.6975) ₁₀ is	
		(0.1101),	·	
		<u> -</u>	(B) $(0.1100)_2$	
	(C) ((0.1011) ₂	(D) (0.1001) ₂	
42.		compilation of C program	n. we get the	
		bject file	(B) executable file	
	(C) b	inary file	(D) pdf file	
43.	In first	pass, the assembler reac	ds the program to collect symbols defined with offsets in a	
	(A) P	rogram control table	(B) page table	
	(C) h	ash table	(D) symbol table	
JELE	T_Agric	culture Engg.	9	

- 44. Identify the true statement from the following sentences:
 - (A) Multi-user operating systems depend upon computer systems with special hardware that permits different processors to be assigned to different users.
 - (B) Text-based user interfaces are easier to use, though less powerful than graphic user interfaces.
 - (C) "Context switching" means that the OS causes the processor to divide its attention between a series of different user processes.
 - (D) Virtual memory expands the amount of space allowed for storing data and instructions by dedicating special cache memory units to hold this information temporarily.
- **45.** Which is **not** the multitasking operating system?
 - (A) Windows 2000

(B) MS-DOS

(C) Windows XP

- (D) Windows NT
- 46. A program that accepts a symbolic language program and produces its binary machine language equivalent is called
 - (A) an assembler

(B) / an interpreter

(C) an application software

- (D) . a compiler
- 47. What is the output of the following program

main()

{int a,b;

a = -3 - -3:

b = -3 - - (-3):

printf("a=%d b=%d",a,b):}

(A) error

(B) a = 0, b = -6

(C) a = 1, b = -5

- (D) a = 0, b = 6
- **48.** A do-while loop is used when we want that the statements within the loop must be executed:
 - (A) at least once

(B) more than once

(C) only once

(D) infinite times

JELET_Agriculture Engg.

49.	Ado	the missing staten #include <stdio.l< th=""><th>nent for the following</th><th>progra</th><th>am to print 45 :</th></stdio.l<>	nent for the following	progra	am to print 45 :
		main()			
		{ int j. *ptr;			
		*ptr = 45 ;			
		printf(\n%d", j);}			
	(A)	*ptr = *j		(D)	mtu 0.:
	(C)				ptr = &j
	(0)	pu j		(D)	&ptr = &*j
50.	Wh	at is the output of the			
		#include <stdio.h< td=""><td>> "</td><td></td><td></td></stdio.h<>	> "		
		main()			
		{			
		printf("%c	". "abcdefgh"[4]):		
		}			
	(A)	d		(B)	No output will be printed
	(C)	e		(D)	Run Time Error
51.	A ca	able interconnects t share the printers. T	his configuration is a	n.exán	printers h single office so that users
	(Λ)			(B)	WAN
	(C)	LAN		(D)	VPN
52.	Whi	ch layer handles the	ecreation of data fram	ies?	
	(A)	physical		(B)	data link
	(C)	session		(D)	transport
53.	Λ de	vice operating at the	e network layer is cal	led a	
	(A)	Bridge		(B)	Router
	(C)	Hub		(D)	Repeater
54.	For e	electronic mail trans	smission we need		
	(A)	FTP		(B)	HTTP
	(C)	SMTP		(D)	ТСР/ГР
55.	HTT	P server uses the po	ort number		
	(A)	20		·(B)	40
	(C)	23		(D)	80
ŒLE	ET_Ag	riculture Engg.	11	, /	
		200			I I

ENVIRONMENTAL ENGINEERING

Which of the following is not included in Environmental Auditing?

56.

	(A)	Pollution monitoring schemes		
	(B)	Storage of toxic chemicals		
	(C)	Scrutiny by the government agencies	S	
	(D)	Safety provisions for industrial work	KS .	
57.	CFC	-11 is		
	(A)	CF ₃ C/	(B)	CFCI ₃
	(C)	CF_2CI_2	(D)	CHCl ₃
58.	For a	air stability, we must have		
	(A)	Dry adiabatic lapse rate = Ambient	lapse rate	
	(B)	Dry adiabatic lapse rate > Ambient	lapse rate	
	(C)	Dry adiabatic lapse rate < Ambient	lapse rate	
	(D)	Both (A) & (C)		
59.	The	pollutant primarily responsible for ph	otochenno	
	(A)	Water vapour	(B)	Sulphur dioxide
	(C)	Oxides of nitrogen	ိုန ^{္နာ (} (D)	Ozone
60.	Che	rnobyl nuclear disaster occurred on		
00.	(A)	26 th April, 1986	(B)	28th November, 1987
	(C)	17 th June, 1977	(D)	5 th January, 1999
61.		re are two samples of water. Sample lit. Then	1 has BOL	50 mg/lit and Sample 2 has BOD 30
	(A)	The degree of pollution is same in b	ooth the sa	mples
	(B)	Sample 1 is more polluted than sam	iple 2	
	(C)	Sample 2 is more polluted than sam	iple 1	
	(D)	No inference can be drawn on the d	egree of p	ollution
62.	Org	anomercury is an example of		
	(A)	Fungicide	(B)	Fumigant
	(C)	Antibiotic	(D)	Rodenticide
JEL	ET_A	griculture Engg.	12	

63	. CC	D test is more scientific that	an BOD test b	ecause	
	(A)				
	(B)				
	(C)		-		
	(D)			nd oxid	lizing chemicals
64.	The	e main chemical responsible	for hematoto	xicity	is
	(A)			(B)	
	(C)	SO ₂			°CO
65.	Tubl	Der waste :	ethods would	be the	best suited for disposal of plastic and
	(A)	Composting		(B)	Pyrolysis
	(C)	Incineration		(D)	Sanitary landfill
66.	Con	nposting is suitable			
	(A)	for stable organic matters		(B)	at low temperatures
	(C)	in absence of moisture con	ntent	~(D).	in all the above conditions
67.	Full	form of ESP is	12		
	(A)	Electrostatic Precipitator		(B)	Electrostatic Producer
	(C)	Electrostatic source Precip	oitator	(D)	Electrostatic Production
68.	In res	sidential area permissible no	oise level stan	idard d	luring Night time (9 p.m. to 6 a.m.) is
	(A)	45 dBΛ			55 dBA
	(C)	65 dBA		(D)	75 dBA
69.	Mont	real protocol is related with	ı		
	(A)	Water pollution		(B)	Use of CFCs
	(C)	Phosphate		(D)	Carbonate
70.	Aircra	aft noise is measured by			
	(A)	L _{epn}		(B)	L_{eq}
	(C)	L ₁₀ (18hrs) index		(D)	Decibel
JELE	T_Agı	riculture Engg.	13		. A

SOIL & WATER ENGINEERING

71.	Dug	wells must be deep enough to exte	end about _	metre below the water table
	in dı	ry weather.		
	(A)	2-4	(B)	4-10
	(C)	10-15	(D)	15-20
				•
72.	Unit	hydrograph is used to estimate the	run-off fron	ı a
	(A)	command area	(B)	forest
	(C)	watershed	(D)	cropping area
73.	Drip	irrigation is preferred for	_cultivatio	on.
	(A)	potato	(B)	jute
	(C)	mustard	(D)	apple
74.	Strer	ngth of cement concrete depends on		
	(A)	quality of water	(B)	quality of sand
	(C)	quality of aggregate	(D)	water-cement ratio
75.	The	instrument used for measuring evap	otranspirati	on is
	(A)	lysimeter	(B)	infiltrometer
	(C)	solarimeter	(D)	rain gauge
JELI	ET_Ag	griculture Engg.	14	A

76.	The	e term 'time of concentration' is associate	ed with	1
	(A)	irrigation efficiency	(B)	open channel drainage
	(C)	pumping efficiency	(D)	watershed
77.	Нус	lraulic structures are built for preventing		
	(A)	water ponding	(B)	soil erosion
	(C)	infiltration	(D)	high air velocity in watershed
78.	The	suction head of a centrifugal pump shoul	ld not l	oe more than metre.
	(Λ)	7 16	(B)	12
	(C)	16	(D)	21
79.	If the	e land area has uniform slope towards on	e direc	tion, the contour lines will be
	(A)	semi-circular	(B)	concentric
	(C)	parallel	(D)	undefined
80.	If the	water inside the aquifer remains under p	ressur	e, it is called
	(A)	unconfined aquifer	(B)	volcanic aquifer
	(C)	saturated aquifer	(D)	contined aquifer

FARM MACHINERY & POWER

81.	Fuel	injector is present in		
	(Λ)	2-stroke SI engine	(B)	4-stroke CI engine
	(C)	4-stroke SI engine	(D)	external combustion engine
82.	The	mechanical efficiency of the diesel engine	e lies i	n the range of
	(A)	80-90%	(B)	60-70%
	(C)	40-50%	(D)	20-30%
83.	Diffe	erential is provided in the tractor to facilit	ate	Grand and a second
	(A)	field operation	(TB)	straight movement
	(C)	turning	(D)	proper hitching of implements
		and the second s		
84.	In di	esel engine, fuel is injected inside the cyl	inder a	it
	(A)	15-30 degree after BDC	(B)	15-30 degree after TDC
	(C)	15-30 degree before BDC	(D)	15-30 degree before TDC
85.	Vert	ical suction in mould board plough is pro	vided	to
	(A)	maintain uniform width of cut	(B)	pulverize the soil
	(C)	reduce the tool vibration	(D)	maintain uniform depth of cut

86.	The	e function of the reel of a combin	e is to	
	(A)	feed the crops to the cutter bar	-	
	(B)	feed the cut crop to the threshi	ng unit	
	(C)	act as a beater		
	(D)	feed the straw to the straw-wa	lker	•
87.	Off	-set type disc harrow has		
	(A)	one gang	(B)	two gangs
	(C)	three gangs	(D)	four gangs
88.	The	operational pressure of a hydrau	lic sprayer sho	arte not be less thankPa.
	(A)	60	(B)	100
	(C)	140	(D)	670
			,	
89.	Conv	version efficiency of commercial	solar cell is	
	(A)	0-5%	(B)	10-15%
	(C)	15-25%	(D)	25-35%
90.	For a	naerobic digestion, optimum soli	d content of co	ow dung slurry is
	(A)	8-9%	(B)	12-15%
	(C)	15-20%	(D)	20-25%
JELE	T_Ag	riculture Engg.	17	

FOOD PROCESSES & POST HARVEST ENGINEERING

91.	Size	reduction is performed by the mechanism	n of	
	(A)	crushing	(B)	impact
	(C)	shearing	(D)	All (A), (B) and (C)
92.	Fodo	der stored in air tight trench silo is known	as	
	(A)	silage	(B)	hay
	(C)	moist fodder	(D)	concentrate
93.	Mos	t of the drying operations are based on	5	
	(A)	conduction	(B)	convection
	(C)	radiation	(D)	centrifugation
		Care do		
94.	Sepa	tration by screening is performed by the p	ropert	Σ
	(A)	shape	(B)	density
	(C)	texture	(D)	size
95.	The	particle density of a material is 2.0 g/cc	and its	s porosity is 40%. The bulk density of
	the r	naterial in g/cc is		
	(A)	0.80	(B)	1.43
	(C)	3.33	(D)	5.00
JEL	ET A	griculture Engg. 18		

96.	The cyclone separator works on the principle of				
	(A)	centrifugal force	(B)	gravitational force	
	(C)	hydraulic pressure	(D)	Both (A) and (B)	
97.	The	main disadvantage of hard water is.			
	(A)	bad taste	(B)	foul smell	
	(C)	increased soap consumption	(D)	more turbidity	
				and the first state of the stat	
98.	Fors	safe food storage at normal temperature. ا	hepf	of the product should be about	
	(A)	5	(B)	7	
	(C)	9	(D)	11	
99.	The	temperature and holding time for pasteur	ization	ı is	
	(A)	61 °C. 20 min	(B)	70 °C, 15 min	
	(C)	70 °C, 15 sec	(D)	90 °C, 15 sec	
100.	Dehu	sking of paddy is recommended by			
	(A)	rubber roll dehusker	(B)	centrifugal dehusker	
	(C)	Engelburg dehusker	(D)	gyratory crusher	
JELE	JELET_Agriculture Engg. 19				