- In the combustion of butane 72gm of H_2O is produced. The amount of butane taken initially is [X] \times 10⁻¹.
- Ans. 464

resonance.ac.in/answer-key-solutions/JEE-Main/2021/jeemain.aspx?uid=517235552&key=J4E7FpIPTSQ1zp2iLHul

Sol. $C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O$

$$C_nH_{2n+2} + \left(\frac{3n+1}{2}\right)O_2 \rightarrow n CO_2 + (n+1) H_2O$$

: 1 mole C₄H10 produces 5 mole H₂O.

$$5 \text{ mole } (5 \times 18) = 90 \text{ gm}.$$

$$72 \text{ gm} \rightarrow \left(\frac{58 \times 72}{90}\right) = 46.4 \text{ gm}$$

A+B ⇒ 2C.

Initially 1 mole each of A, B and C are taken in 1 litre vessel. Equilibrium constant is 100. The concentration of C at equilibrium in [X] × 10-1. The value of 'X' is

Sol. A + B
$$\rightleftharpoons$$
 2C K_C = 100

$$t = t_{eq}$$
 1-x 1-x 1 + 2x

$$Kc = \frac{(1+2x)^2}{(1-x)^2}$$

$$100 = \frac{(1+2x)^2}{(1-x)^2} \text{ of [C]}$$

$$10 = \frac{\left(1 + 2x\right)}{\left(1 - x\right)}$$

$$X = \frac{3}{4}$$

- In the leaching of Bauxite, which Oxide is leached out using NaOH. 3.
 - (1) Fe₂O₃
- (2) Al₂O₃
- (4) SiO₂

Ans.

← → C 🗎 resonance.ac.in/answer-key-solutions/JEE-Main/2021/jeemain.aspx?uid=517235552&key=J4E7FpIPTSQ1zp2iLHuI

Al2O3 .xH2O + NaOH -→ NaAlO₂ Sol.

- Among the given oxides
 - (i) CrO₃

(ii) V₂O₅

- (iii) Fe₂O₃
- (iv) MnO₂

The correct increasing order of oxidation state of metal is

$$(1) \underbrace{(i)}_{} < (ii) < (iii) < (iii) < (iii) < (iii) < (ii) < (ii) < (iii) <$$

Sol.

	Compound	Oxidation state of metal
(i)	CrO ₃	+6
(ii)	V ₂ O ₅	+5
(iii)	Fe ₂ O ₃	+3
(iv)	MnO ₂	+4

- Find the concentration of Fe²⁺ (10 ml) required to reduce 15 ml of 0.1M K₂Cr₂O₇ Solution is:
- 0.9 Ans.
- **Sol.** $Cr_2O_7^{2-} + Fe^{2+} \rightarrow Fe^{3+} + Cr^{3+}$
 - 15 ml 10 ml
 - 0.1 M
 - $N_1V_1 = N_2V_2$
 - $15 \times 0.1 \times 6 = 10 \times M \times 1$

Resonance | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY

- Arrange the following ions in the increasing order of size, Na+, K+, Mg+2, Al1+3.
- (1) $A\ell^3 + < Mg2 + < Na^+ < K^+$

(2) $K^+ < Na^+ < A\ell^3 + < Mg2+$

- (3) $A\ell^3 + < Mg2 + < K^+ < Na^+$
- (4) Mg2+ < < A ℓ^3 < K+ < Na+

Ans. (1)

resonance.ac.in/answer-key-solutions/JEE-Main/2021/jeemain.aspx?uid=517235552&key=J4E7FpIPTSQ1zp2iLHul

Sol. K+ > Na+

{moving down the group size increases}

Na + >
$$Mg^{+2}$$
 > $A\ell^3$ {Isoelectronic species}

- 12 13 10 10
- Henry's law constant for CO₂ in water in 0.835 × 2 × 10³ bar. How many milimoles of CO₂ would dissolve in 0.9 litre water? Assume CO2 gas exerts a partial pressure of 0.853 bar.
- 25 Ans.
- $P_{CO_2} = K_H X_{CO_2}$ Sol.

$$K_{CO_2} = \frac{P_{CO_2}}{K_H} = \frac{0.835}{0.835 \times 2 \times 10^3}$$

$$X_{CO_2} = 0.5 \times 10^{-3}$$

Number of moles of water =
$$\frac{900}{18} = 50$$

$$\frac{n_{\rm CO_2}}{n_{\rm CO_2} + nH_2O} = 0.5 \times 10^{-3}$$

(n_{CO2} in denominator is neglected as it is << 50)

$$n_{CO_2} = 0.5 \times 10^{-3} \times 50 = 25 \times 10^{-3} \text{ moles}$$

- = 25 milimoles
- Which of the following does not exist.
 - (1) SiF₆²-
- (2) SiCl62-
- (3) GeCl62-
- (4) Sn(OH)62-

- Ans.
- The main reasons are:

Resonance | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY

- Which of the following complex is active in magnetic field.
 - (1) [Fe(H₂O)₆]³⁺
- (2) [Co(CN)₆]³-
- (3) [Ni(Co)₄]
- (4) [Ni(CN)₄]²-

- Ans.
- Fe3+; 3d5 Sol.

If will contain 5 unpaired electrons.

Thus it is paramagnetic and attracted in external magnetic field.

- Empirical formula of a given octahedral complex is CrCl₃.3NH₃.3H₂O. It precipitates 3 moles of AgCl. What is the secondary valency of central atom.
 - (1) 4

(2) 3

(3) 1

(4) 6

- (4) Ans.
- $[Cr(NH_3)_3(H_2O)]Cl_3 + AgNO_3 \longrightarrow 3AgCl \downarrow$

White ppt.

- For a process ΔH_{fusion} = 2.4 I.Cal mol⁻¹ and DH_{Vaporistion} = 98.6 k.Cal mol⁻¹. Then ΔH_{Sublimation} (on Kcal mol⁻¹):
- 101 K.Cal mol-1 Ans.
- $\Delta H_{Sublimation} = \Delta H_{vap} + \Delta H_{fusion}$
 - = 98.6 + 2.4
 - = 101 K.Cal mol-1
- Which of the following statement is correct:
 - (1) H-H bond strength is equal to D-D bond strength.
 - (2) H-H bond strength is half of D-D bond strength.
 - (3) H–H bond strength is double the D–D bond.
 - (4) H-H bond strength is less than D-D bond strength
- Ans.
- H-H bond denunciation energy 435 KJ/mol
 - D-D bond denunciation energy 450 KJ/mol

- (1) I, III First order; II, IV Zero order
- (2) I, IV zero order ; II, III First order
- (3) I, II zero order ; III, IV First order
- (4) I, IV- First order; II, IV zero order

Ans.

Sol. $A_t = (A)_0 - Kt.$: Zero Oder

$$t_{1/2} = \left(\frac{A_0}{2K}\right)$$

 $A = A_0e^{-Kt}$; First oder

$$t_{1/2} = \frac{\ell n2}{K}$$

Resonance Eduventures Ltd.

0

resonance.ac.in/answer-key-solutions/JEE-Main/2021/jeemain.aspx?uid=517235552&key=J4E7FpIPTSQ1zp2iLHul

Resonance* | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY

- 21.

 - (3) (4)
- Ans. (2)
- Assertion: Primary aromatic amine can't be prepared by gabrial-thalamide method. 22.

Reason: Aryl halide cannot be undergo nucleophilic substitution reaction.

- (1) Assertion-1 is True, Reason-2 is True; Reason-2 is a correct explanation for Assertion-1.
- (2) Assertion-1 is True, Reason-2 is True; Reason-2 is NOT a correct explanation for Assertion-1.
- (3) Assertion-1 is True, Reason-2 is False.
- (4) Assertion-1 is False, Reason-2 is True.

(1) Ans.

Which of the following react with NaHCO3 and evolved CO2 gas. 23.

O₂N
$$O_2$$
 O_2 O_3 O_4 O_4

Ans. (1)

24.
$$\begin{array}{c} CH_3-CHO/NaOH \longrightarrow A & (1) I_2/NaOH \longrightarrow B \\ \hline (2) H^+/H_2O \longrightarrow B \end{array}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 🐚 7340010333 🌃 fecebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🛗 www.youtube.com/resowatch 🕒 biog.resonance.ac.in

This solution was download from Resonance JEE (MAIN) 2021 Solution portal

PAGE#7

0

