

Resomance

(Main)

 PAPER-1 (B.E./B. TECH.)

COMPUTER BASED TEST (CBT) Memory Based Questions \& Solutions

Date: 25 July, 2021 (SHIFT-1) | TIME : (9.00 a.m. to 12.00 p.m) Duration: 3 Hours | Max. Marks: 300

SUBJECT: PHYSICS

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

PART : PHYSICS

1. A body of mass 2 kg and linear velocity $4 \mathrm{~m} / \mathrm{s}$ collides elastically head on with another body at rest. After collision body of mass 2 kg starts moving with velocity $1 \mathrm{~m} / \mathrm{s}$ then what will the velocity of center of mass of system ?
(1) $1.5 \mathrm{~m} / \mathrm{s}$
(2) $0.5 \mathrm{~m} / \mathrm{s}$
(3) $3.5 \mathrm{~m} / \mathrm{s}$
(4) $2.5 \mathrm{~m} / \mathrm{s}$

Ans. (4)
Sol. From linear momentum conservation
$2 \times 4+0=2 \times 1+m_{2} v_{2}$
From the definition of elastic collision
$v_{2}-v_{1}=e\left(u_{1}-u_{2}\right)$
$\mathrm{v}_{2}-1=1(4-0)$
$\mathrm{v}_{2}=5$
$8=2+m_{2} \times 5$
$m_{2}=6 / 5$
$\mathrm{V}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}}{\mathrm{~m}_{1}+\mathrm{v}_{2}}=\frac{2 \times 4+0}{2+\frac{6}{5}}=2.5 \mathrm{~m} / \mathrm{s}$
2. A simple pendulum of length $1 / 2 \mathrm{~m}$ has initial speed $3 \mathrm{~m} / \mathrm{s}$ when pendulum mass is at lowermost point. What will be the speed of pendulum mass, when string of pendulum makes an angle of 60° with vertical ?

(1) $2 \mathrm{~m} / \mathrm{s}$
(2) $4 \mathrm{~m} / \mathrm{s}$
(3) $6 \mathrm{~m} / \mathrm{s}$
(4) $8 \mathrm{~m} / \mathrm{s}$

Ans. (1)
Sol. $\quad \frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}+m g \ell\left(1-\cos 60^{\circ}\right)$
$u^{2}=v^{2}+2 g \ell\left(1-\cos 60^{\circ}\right)$
$9=v^{2}+20 \times 1 / 2 \times 1 / 2$
$9=v^{2}+5$
$\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$

Resonance Eduventures Ltd.

Rescnannce ${ }^{\text {Reduating tor beter tomorow }}$ | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-1)| PAPER-1| MEMORY BASED | PHYSICS

3. A bulb has rated power 200 W and rated voltage 100 V . This bulb is connected in circuit as shown in figure. What should be value of load resistance RL so that bulb works at rated voltage ?

(1) 25Ω
(2) 50Ω
(3) 75Ω
(4) 100Ω

Ans. (2)
Sol. $P=\frac{V^{2}}{R}$
$200=\frac{(100)^{2}}{R}$
$R=50 \Omega$

Current through bulb
$\mathrm{i}=\frac{100}{50} \Rightarrow 2 \mathrm{~A}$
$V L=100$
$R_{L}=\frac{100}{2}=50 \Omega$
4. Two geometrical identical wires have young modules Y_{1} and Y_{2} then find equivalent young modules :

(1) $Y_{1}+Y_{2}$
(2) $\frac{Y_{1}+Y_{2}}{2}$
(3) $\frac{Y_{1} Y_{2}}{Y_{1}+Y_{2}}$
(4) $\sqrt{Y_{1} Y_{2}}$

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Resciancie ${ }_{\text {Educating for better tomorrow }}^{\text {® }}$ | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-1)| PAPER-1 | MEMORY BASED | PHYSICS

Sol.

$K_{\text {eq }}=K_{1}+K_{2}$
$\frac{Y 2 A}{\ell}=\frac{Y_{1} A}{\ell}+\frac{Y_{2} A}{\ell}$
$Y=\frac{Y_{1}+Y_{2}}{2}$
5. Battery is connected to a resistor and a inductor for a long time as shown in figure, then battery is removed \& short circuited. Find the current in the circuit after 1 ms after battery get removed :

(1) 1.32 A
(2) 0.44 A
(3) 0.65 A
(4) 0.74 A

Ans. (4)
Sol. $\quad \mathrm{i}_{0}=\frac{20}{10}=2 \mathrm{~A}$
$\mathrm{i}=\mathrm{i}_{\mathrm{i}} \mathrm{e}^{-\mathrm{Rt} / \mathrm{L}}$
$=2 \times e^{-\frac{10 \times 10^{-3}}{10 \times 10^{-3}}}=\frac{2}{e}=0.74 \mathrm{~A}$
6. A particle of mass 4 m at rest splits into two particle of mass 3 m and m . If both the masses have different velocities then find ratio of their De-Broglie wavelength ?
(1) $1: 1$
(2) $1: 2$
(3) $2: 1$
(4) $1: 3$

Ans. (1)
Sol. $\lambda=\frac{h}{P}$
here momentum is same for both
$\frac{\lambda_{2 m}}{\lambda_{m}}=\frac{1}{1}$
7. An electron, a proton and an alpha particle are get accelerated by giving same K.E., then which of the following is correct about De-Broglie wavelength.
(1) $\lambda_{e}<\lambda_{p}<\lambda_{\alpha}$
(2) $\lambda_{e}>\lambda_{p}>\lambda_{\alpha}$
(3) $\lambda_{e}=\lambda_{p}<\lambda_{\alpha}$
(4) $\lambda_{e}=\lambda_{p}>\lambda_{\alpha}$

Ans. (2)
Sol. $\quad \lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mK.E} .}} \Rightarrow \lambda \propto \frac{1}{\sqrt{\mathrm{~m}}}$
$m_{\alpha}>m_{p}>m_{e}$
so $\lambda_{e}>\lambda_{p}>\lambda_{\alpha}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

$\underset{\text { Reduating for better tomorrow }}{\text { R }}$ | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-1)| PAPER-1 | MEMORY BASED | PHYSICS

8. A ball of mass m is thrown towards wall in two different situations,
(i) Ball strikes perpendicular to wall
(ii) Ball strikes at an angle of 45° to wall

What will be ratio of impulse in two cases ?
(1) $2: 1$
(2) $1: 1$
(3) $1: 2$
(4) $3: 1$

Ans. (2)
Sol.

During elastic collision with vertical wall, velocity in vertical direction remains constant and component velocity along horizontal direction become opposite after collision.
So, change in momentum,
$\Delta \mathrm{P}=2 \mathrm{mu} \cos \theta$ in each case
So, $\frac{\Delta \mathrm{P}_{1}}{\Delta \mathrm{P}_{2}}=\frac{2 m u \cos \theta}{2 m u \cos \theta}=1: 1$
9. Photons of wavelength 400 nm strikes on a material with energy 1000 J in 10 sec . what will be no. of electron leaving the material in one second?
(1) 5×10^{9}
(2) 5×10^{16}
(3) 5×10^{13}
(4) 5×10^{10}

Ans. (2)
Sol. Energy $=N \times \frac{h c}{\lambda}$
$1000=\frac{12400}{4000} \times N \times 1.6 \times 10^{-19}$
$N=\frac{1000 \times 4}{12400 \times 1.6 \times 10^{-19}}$
So, number of electron leaving from material in $1 \mathrm{sec}=\frac{\mathrm{N}}{10}=5 \times 10^{16}$
10. A radioactive nuclei of initial number of active nuclei N_{o}. Decays $N_{0} / 4$ active nuclei in time t_{1} and decays to $N_{0} / 2$ active nuclei in time t_{2}. Find the ratio between t_{1} and t_{2} ?
(1) 0.42
(2) 0.55
(3) 0.62
(4) 0.75

Ans. (1)
Sol. $\quad N=N_{0} e^{-\lambda t}$
$\frac{3 N_{0}}{4}=N_{0} e^{-\lambda t_{1}}$
$\mathrm{t}_{1}=\frac{\ell \mathrm{n} \frac{4}{3}}{\lambda} ; \mathrm{t}_{2}=\frac{\ell \mathrm{n} 2}{\lambda}$
$\frac{t_{1}}{t_{2}}=\frac{\ell n \frac{4}{3}}{\ell n 2}=\frac{2 \ell \mathrm{n} 2-\ell \mathrm{n} 3}{\ell \mathrm{n} 2}=2-\frac{1.098}{0.693}=2-1.58=0.42$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 18002585555 Q 7340010333 facebook.com/ResonanceEdu y twitter.com/ResonanceEdu vire www.youtube.com/resowatch Θ blog.resonance.ac.in
11. For an ideal gas, C_{v} is the specific heat at constant volume and C_{p} is the Specific heat at constant pressure. if at some temperature T_{p}, they are related as $C_{p}-C_{v}=R$ and for some other temperature T_{Q} They are related as $C_{p}-C_{v}=1.1 R$, then which is correct
(1) $T_{p}>T_{Q}$
(2) $T_{Q}>T_{p}$
(3) $T_{p}=T_{Q}$
(4) can't say

Ans. (1)
Sol. At high temperature gas behaves has ideal gas.
12. Find equivalent circuit

(1) NOR
(2) OR
(3) AND
(4) NAND

Ans. (3)
Sol.

13. Two block of mass 800 gm and 200 gm are attached by two springs of spring constant 4 K and K in series as shown in figure. Find angular frequency of oscillation of system ? (Value of $\mathrm{K}=20 \mathrm{~N} / \mathrm{m}$)

(1) $10 \mathrm{rad} / \mathrm{s}$
(2) $16 \mathrm{rad} / \mathrm{s}$
(3) $12 \mathrm{rad} / \mathrm{s}$
(4) $14 \mathrm{rad} / \mathrm{s}$

Ans. (1)
Sol. $\quad T=2 \pi \sqrt{\frac{\mu}{k_{\text {eq }}}}$
$\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \Rightarrow \frac{200 \times 800}{200+800}=160 \mathrm{~g}=0.16 \mathrm{~kg}$
$\mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}=\frac{4 \mathrm{k} \times \mathrm{k}}{4 \mathrm{k}+\mathrm{k}}=\frac{4}{5} \mathrm{k}=\frac{4}{5} \times 20=16 \frac{\mathrm{~N}}{\mathrm{~m}}$
$\mathrm{T}=2 \pi \sqrt{\frac{0.16}{16}} ; \quad \mathrm{T}=\pi / 5 \mathrm{sec}$.
$\omega=\frac{2 \pi}{\mathrm{~T}}=10 \mathrm{rad} / \mathrm{s}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLCO24029
Toll Free: 180025855557340010333 ffacebook.com/ResonanceEdu Y twitter.com/Resonanceedu 㘣www.youtube.com/resowatch Eblog.resonance.ac.in
14. A conducting loop of radius 0.1 m has a time variable magnetic field $B(t)=\frac{4}{100}\left[1-\frac{\mathrm{t}}{100}\right]$. Find energy dissipated till magnetic field becomes zero if resistance of loop is 0.01Ω.
(1) $16 \times 10^{-7} \mathrm{~J}$
(2) $8 \times 10^{-7} \mathrm{~J}$
(3) $4 \times 10^{-7} \mathrm{~J}$
(4) $2 \times 10^{-7} \mathrm{~J}$

Ans. (1)
Sol. $\quad \varepsilon=\left|-\mathrm{A} \frac{\mathrm{dB}}{\mathrm{dt}}\right|$
$\varepsilon=\pi(0.1)^{2} \times \frac{4}{100} \times \frac{1}{100}$
$\varepsilon=4 \pi \times 10^{-6} \mathrm{v}$
When $B=0, t=100$
Energy $=\frac{\varepsilon^{2}}{R} \times t=\frac{\left(4 \pi \times 10^{-6}\right)^{2}}{10^{-2}} \times 100=16 \pi^{2} \times 10^{-8}=16 \times 10^{-7} \mathrm{~J}$
15. An Electric field of a wave propagating as $E=E_{0} \cos \left(k z-5.6 \times 10^{3} t\right)$ reflecting from mirror at $z=a$, then
(1) $\lambda=5.6 \mathrm{~m}$
(2) $\mathrm{f}=5.6 \times 10^{3} \mathrm{~Hz}$
(3) Equation of reflecting wave $\mathrm{E}=\mathrm{E}_{0} \cos \left(\mathrm{kz}-5.6 \times 10^{3} \mathrm{t}\right)$
(4) Equation of reflecting wave $E=-E_{0} \cos \left(k z+5.6 \times 10^{3} t\right)$

Ans. (4)
Sol. $w=5.6 \times 10^{3}$
$2 \pi \mathrm{f}=5.6 \times 10^{3}$
$\mathrm{f}=\frac{5.6 \times 10^{3}}{2 \pi}=\frac{5.6 \times 10^{3}}{2 \times 3.14}=891.7 \mathrm{~Hz}$
$C=f \lambda$
$\lambda=\frac{c}{f}=\frac{3 \times 10^{8}}{891.7}=3.36 \times 10^{5} \mathrm{~m}$
Reflecting wave
$\mathrm{E}=\mathrm{E}_{0} \cos \left(-\mathrm{kz}-5.6 \times 10^{3}+\pi\right)$
$\mathrm{E}=-\mathrm{E}_{0} \cos \left(\mathrm{kz}+5.6 \times 10^{3}+\pi\right)$
16. Two similar charge of magnitude q are fixed at distance of 2 m . And another opposite charge of same magnitude is brought at center point between two charges and given a slight displacement along equatorial direction and released then angular frequency of oscillations of opposite charge will be? (Value of $\mathrm{q}^{2}=10 \mathrm{C}^{2}$) (Mass of opposite charge 0.2 gram)
(1) $3 \times 10^{7} \mathrm{rad} / \mathrm{s}$
(2) $3 \times 10^{5} \mathrm{rad} / \mathrm{s}$
(3) $3 \times 10^{-5} \mathrm{rad} / \mathrm{s}$
(4) $3 \times 10^{6} \mathrm{rad} / \mathrm{s}$

Ans. (1)
Sol.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 18002585555 Q 7340010333 facebook.com/ResonanceEdu y twitter.com/ResonanceEdu ymere www.youtube.com/resowatch \because blog.resonance.ac.in

Net force on charge is
$F_{\text {net }}=2 F \cos \theta$ Here $F=\frac{k q^{2}}{\left(1+x^{2}\right)}$
$F_{\text {net }}=\frac{2 k q^{2}}{\left(1+\mathrm{x}^{2}\right)} \cdot \frac{\mathrm{X}}{\sqrt{1+\mathrm{X}^{2}}}$
$F_{\text {net }}=\frac{2 \mathrm{kq}^{2} x}{\left(1+\mathrm{x}^{2}\right)^{3 / 2}} \because x \ll 1$, so $\mathrm{x}^{2} \lll 1$
$F_{\text {net }}=2 k q^{2} x$
$m a=2 k q^{2} x$
$a=\frac{2 k q^{2} x}{m}$
$\omega=\sqrt{\frac{2 \mathrm{kq}^{2}}{\mathrm{~m}}}=\sqrt{\frac{2 \times 9 \times 10^{9} \times 10}{2 \times 10^{-4}}}=3 \times 10^{7} \mathrm{rad} / \mathrm{sec}$.
17. Water drops are falling from a tap in regular interval of time. A drop falls from the tap and after 4 second of falling, the drop is 34.3 m away from next drop. Then drops are falling at rate of (Use $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(1) 1 drop in 1 sec
(2) 1 drop in 7 sec
(3) 1 drop in 5 sec
(4) 1 drop in 6 sec

Ans. (1)
Sol. Let next drop after t sec distance travelled by $I^{s t}$ drop in 4 sec. is $S_{1}=\frac{1}{2} \mathrm{at}^{2}=78.4 \mathrm{~m}$ (t should be less then 4 sec) distance travelled by succeeding drop in $4-\mathrm{t}$ sec
$S_{2}=\frac{1}{2} a(4-t)^{2}$
$\mathrm{S}_{1}-\mathrm{S}_{2}=34.3$
$78.4-4.9(4-t)^{2}=34.3$
$(4-t)^{2}=9$
$4-t=3$
$\mathrm{t}=1 \mathrm{sec}$
18. In YDSE, distance between the slits are varied as $d=a+b \sin \omega t$. What will be difference between maximum and minimum fringe width?
(1) $\frac{2 b D \lambda}{a^{2}-b^{2}}$
(2) $\frac{4 b D \lambda}{a^{2}-b^{2}}$
(3) $\frac{3 b D \lambda}{a^{2}+b^{2}}$
(4) $\frac{5 b D \lambda}{a^{2}+b^{2}}$

Ans. (1)
Sol. Fringe width $=\frac{D \lambda}{d}$
$\beta=\frac{D \lambda}{(a+b \sin w t)}$
$\beta_{\max }-\beta_{\sin } \Rightarrow \frac{D \lambda}{a-b}-\frac{D \lambda}{a+b} \Rightarrow D \lambda\left[\frac{a+b-a+b}{a^{2}+b^{2}}\right]=\frac{2 b D \lambda}{a^{2}-b^{2}}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800258555 © 7340010333 facebook.com/ResonanceEdu Y twitter.com/ResonanceEdu www.youtube.com/resowatch \quad blog.resonance.ac.in
19. Match the following column.
(I)

(a) $\vec{C}-\vec{A}-\vec{B}=0$
(II)

(b) $\vec{A}-\vec{C}-\vec{B}=0$
(III)

(c) $\vec{B}-\vec{A}-\vec{C}=0$
(IV)

(d) $\vec{A}+\vec{B}+\vec{C}=0$
(1) (I) c ; (II) d ; (III) b; (IV) a
(2) (I) d; (II) c ; (III) b; (IV) a
(3) (I) c ; (II) d; (III) a ; (IV) b
(4) (I) b ; (II) d ; (III) a ; (IV) c

Ans. (1)
Sol. (I) $\vec{A}+\vec{C}=\vec{B}$
(II) $\vec{A}+\vec{B}+\vec{C}=0$
(III) $\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{C}}=0$
(IV) $\vec{A}+\vec{B}-\vec{C}=0$
20. In a parallel plate capacitor distance between the plates is 'd'. If dielectric of variable permeability is filled as:

$$
\begin{array}{ll}
\varepsilon(x)=\varepsilon_{0}+k x & ; 0<x \leq d / 2 \\
\varepsilon(x)=\varepsilon_{0}+k(d-x) & ; d / 2<x \leq d
\end{array}
$$

Find capacitance ?
(1) $\frac{1}{\mathrm{Ak}} \times \ln \frac{\varepsilon_{0}+\frac{\mathrm{kd}}{2}}{\varepsilon_{0}}$
(2) $\frac{1}{\mathrm{Ak}} \times 2 \ln \frac{\varepsilon_{0}+\frac{\mathrm{kd}}{2}}{\varepsilon_{0}}$
(3) $\frac{1}{A k} \times \ln \frac{\varepsilon_{0}-\frac{k d}{2}}{\varepsilon_{0}}$
(4) $\frac{1}{\mathrm{Ak}} \times 2 \ell \mathrm{n} \frac{\varepsilon_{0}-\frac{\mathrm{kd}}{2}}{\varepsilon_{0}}$

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol.

$\frac{1}{C_{\text {eq }}} \Rightarrow \int \frac{d x}{A \varepsilon}$
$\Rightarrow \int_{0}^{d / 2} \frac{d x}{A\left(\varepsilon_{0}+k x\right)}+\int_{d / 2}^{d} \frac{d x}{A\left[\varepsilon_{0}+k(d-x)\right]}$
$\Rightarrow \frac{1}{\mathrm{~A}}\left\{\frac{1}{\mathrm{k}}\left[\ln \left(\varepsilon_{0}+\mathrm{kx}\right)\right]_{0}^{\mathrm{d} / 2}+\frac{1}{\mathrm{k}}\left[\ln \left(\varepsilon_{0}+\mathrm{k}(\mathrm{d}-\mathrm{x})\right]_{\mathrm{d} / 2}^{\mathrm{d}}\right\}\right.$
$\Rightarrow \frac{1}{\mathrm{Ak}} \times 2 \ell n \frac{\varepsilon_{0}+\frac{\mathrm{kd}}{2}}{\varepsilon_{0}}$
21. The position of an object varies as $\vec{R}=10 \lambda \beta t^{2} \hat{i}+5 \beta(t-5) \hat{j}$. Find time at which angular momentum becomes same as that of at $t=0$, about origin?
(1) 10 sec
(2) 12 sec
(3) 15 sec
(4) 17 sec

Ans. (1)
Sol. $\vec{R}=10 \lambda \beta t^{2} \hat{i}+5 \beta(t-5) \hat{j}$
$\vec{v}=20 \lambda \beta t \hat{i}+5 \beta \hat{j}$
$\vec{L}=m(\vec{r} \times \vec{v})$
$\overrightarrow{\mathrm{L}}=\mathrm{m}\left(10 \lambda \beta \mathrm{t}^{\hat{\mathrm{t}}}+5 \beta(\mathrm{t}-5) \hat{\mathrm{j}}\right) \times(20 \lambda \beta t \hat{i}+5 \beta \hat{\mathrm{j}})$
at $t=0, \vec{L}=0$
At any time t
$\overrightarrow{\mathrm{L}}=\mathrm{m}\left(50 \lambda \beta^{2} \mathrm{t} \hat{\mathrm{k}}-100 \lambda \beta^{2}(\mathrm{t}-5)\right) \hat{k}$
$0=50 \mathrm{~m} \lambda \beta^{2}[\mathrm{t}-2(\mathrm{t}-5)) \hat{k}$
$\Rightarrow \mathrm{t}-2 \mathrm{t}+10=0$
$\Rightarrow \mathrm{t}=10 \mathrm{sec}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
22. A message signal $x_{m}=10 \sin \left(2 \pi \times 10^{5}\right.$ t) is amplitude modulated with carrier signal $x_{c}=20 \sin \left(2 \pi \times 10^{7} t\right)$ then find the half of band width.
(1) 100 KHz
(2) 50 KHz
(3) 200 KHz
(4) 0 KHz

Ans. (1)
Sol. Band width $=2 f_{m}$

$$
\begin{aligned}
\therefore \quad & \text { Half of bandwidth }=\mathrm{f}_{\mathrm{m}} \\
& =10^{5} \mathrm{~Hz} \\
& =100 \mathrm{KHz}
\end{aligned}
$$

23. Circuit shown is in the balanced state in which galvanometer shows non-deflection. Given that wire $A B$ has $0.01 \Omega / \mathrm{cm}$ of resistance. Find maximum possible value of voltage that can be measured by this set up.

(1) 10.5 V
(2) 12.5 V
(3) 13.5 V
(4) 15.5 V

Ans. (2)
Sol. At zero deflection

The maximum value of E that can be measured $=V_{A B}$
$V_{A B}=\frac{20}{10+6} \times 10=12.5 \mathrm{~V}$

Resonance Eduventures Ltd.

24. The temperature vs time graph for two different gases A and B having same number of moles is as shown in figure. If heat is supplied by same rate to both the gases, the find the ratio of specific heat capacity of both the gases ?

(1) $3 / 8$
(2) $5 / 8$
(3) $7 / 8$
(4) $9 / 8$

Ans. (1)
Sol. $\quad \mathrm{Q}=\mathrm{nC} \Delta \mathrm{T}$
$\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{nC} \frac{\mathrm{dT}}{\mathrm{dt}}$
Rate of heat is same for both gases
So, $n_{1} C_{1}\left(\frac{d T}{d t}\right)_{1}=n_{2} C_{2}\left(\frac{d T}{d t}\right)_{2}$
$\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{\left(\frac{\mathrm{dT}}{\mathrm{dt}}\right)_{2}}{\left(\frac{\mathrm{dT}}{\mathrm{dt}}\right)_{1}}=\frac{\frac{90}{6}}{\frac{120}{3}}=\frac{90 \times 3}{120 \times 6}=\frac{3}{8}$
25. For a magnetic material, the relative change in magnetic susceptibility is equal to 2.2×10^{-4}. Find the percentage change in magnetic field ?
(1) 0.012
(2) 0.025
(3) 0.022
(4) 0.028

Ans. (3)
Sol. $\mu_{r}=1+\chi$
$\Delta \mu_{r}=\Delta \chi$
also $\quad B \propto \mu_{r}$

$$
B=k \mu_{r} \quad(k=\text { constant })
$$

$\%$ change $=\frac{\Delta B}{B} \times 100=\frac{k\left(\Delta \mu_{r}\right)}{k \mu_{r}} \times 100$
$=\frac{2.2 \times 10^{-4}}{1} \times 100=0.022 \%$
26. A ray incident at an angle 30° on the interface of diamond and vacuum from the diamond side then which of following is incorrect (given μ diamond $=2.42$)
(1) The incident of ray will get refracted
(2) The ray will not get refracted if incident at 53°
(3) The ray will get refracted if incident at 22°
(4) There is always TIR for angle greater then 30°

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Ans. (1)
Sol.

Critical angle $C=\sin ^{-1}\left(\frac{1}{2.42}\right)=24.4^{\circ}$
Given Incident angle $30^{\circ}>\mathrm{C}$
So there is TIR at interface
27. A monoatomic gas filled in a piston cylinder arrangement, its temperature changes from T_{1} to T_{2} and length of gas column changes from L_{1} to L_{2}, against atmosphere. Then the ratio of T_{1} / T_{2} :
(1) $\left(\frac{L_{2}}{L_{1}}\right)^{2 / 3}$
(2) $\left(\frac{L_{1}}{L_{2}}\right)^{2 / 3}$
(3) $\left(\frac{L_{2}}{L_{1}}\right)$
(4) $\left(\frac{L_{1}}{L_{2}}\right)$

Ans. (4)
Sol. $\quad P V=n R T$
at constant atmospheric pressure
$\frac{T_{1}}{T_{2}}=\frac{v_{1}}{v_{2}}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{AL}_{1}}{\mathrm{AL}_{2}}$
$\frac{T_{1}}{T_{2}}=\frac{L_{1}}{L_{2}}$
28. A particle is revolving around a planet with maximum distance x and minimum distance y. If maximum velocity of particle is v_{0} then find minimum velocity of particle :
(1) $\frac{v_{0} x}{y}$
(2) $\frac{v_{0} y}{x}$
(3) $\frac{v_{0} x^{2}}{y^{2}}$
(4) $\frac{v_{0} y^{2}}{x^{2}}$

Ans. (2)
Sol.

By angular momentum conservation
$m v o y=m v x$
$v=\frac{v_{0} y}{x}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 facebook.com/ResonanceEdu \quad Y twitter.com/ResonanceEdu wiwh ww.youtube.com/resowatch blog.resonance.ac.in

$\underset{\text { Reducating for better tomorrow }}{\text { R }}$ | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

29. A radioactive material of mass number 198 decays with half-life of 3 days. If initial amount of radioactive material is 2 mg , then its initial activity will be ?
(1) $1626 \times 10^{5} \mathrm{dps}$
(2) $1626 \times 10^{10} \mathrm{dps}$
(3) $1626 \times 10^{8} \mathrm{dps}$
(4) $1626 \times 10^{6} \mathrm{dps}$

Ans. (2)
Sol. No. of Nuclei $=\frac{\mathrm{m}}{\mathrm{M}} . \mathrm{N}_{\mathrm{A}}=\frac{2 \times 10^{-3}}{198} \times 6.02 \times 10^{23}$
$A_{0}=\lambda N_{0}=\frac{0.693}{3 \times 24 \times 60 \times 60} \times \frac{2 \times 10^{-3}}{198} \times 6.02 \times 10^{23}$
$1625 \times 10^{-8} \times 10^{18}$
$1626 \times 10^{10} \mathrm{dps}$
30. Based on given statement choose the correct option

Statement I : For a disc situated in $x-y$ plane. The radius of gyration is same for x-axis, y-axis and z-axis.
Statement II : In case of rigid body motion there is no change in shape and mass.
(1) Statement $1 \& 2$ both are true
(2) Statement-1 \& 2 both are true statement- 2 is correct explant of statement- 1
(3) Statement-1 is false Statement-2 is true
(4) Statement-2 is true Statement-1 is false.

Ans. (3)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
= HIGHEST No. of ClassroomSelections $\overline{=}$ in JEE (Advanced) 2020 from any Institute of Kota

5 AIRs in TOP-50 in JEE (Adv.) 2020 from Classroom

Classroom: 1833 | Distance: $\mathbf{8 1 3}$

ADMISSION OPEN for Session 2021-22

ONLINE + OFFLINE PROGRAMS

CLASS 11, 12 \& 12+

Target: JEE (Main+Adv.) | JEE (Main) | NEET

Scholarship Upto 90\%*

