

		PART : 0	HEMISTRY					
1.	Arrange the following complex in increasing order of intensity of colour.							
	[Co(CN) ₆] ^{3–} , [Co(H ₂ O) ₆] ²⁺ , [CoCl ₄] ^{2–}							
	(1) [Co(CN)₀]³−, Co(ŀ	H ₂ O) ₆] ²⁺ , [CoCl4] ^{2–}	(2) [CoCl₄] ^{2–} , Co(H ₂ O))6] ²⁺ , [Co(CN)6] ^{3–}				
	(3) <mark>[C</mark> o(CN) ₆]³− , [Co(Cl4] ^{2–} , C <mark>0(H</mark> 2O)6] ²⁺	(4) C <mark>o(H</mark> 2O) ₆] ²⁺ , [Co(0	CN) ₆] ^{3_} , [<mark>CoC</mark> l₄] ^{2_}				
Sol.	(1)							
	Complex	Colour						
	1. [Co(CN) ₆] ^{3–} ,	Yellow						
	2. Co(H ₂ O) ₆] ²⁺	Pink						
	3. [CoCl4] ²⁻	Blue						
2	Which of the followin	n does not disproportion	ate					
	(1) BrO-	(2) BrO_2^-	(3) BrO ₃	(4) BrO ₄ Θ				
Ans.	(4)	., 2						
Sel	$\ln \frac{PrO^{-}}{Pr}$ Br is in may	vimum avidation state. So	it can anly reduce					
Sol.	In DIO_4 , bit is in maximum oxidation state. So it can only reduce							
B								
3.	A metal M on reactio	(2) No	e MO2 type oxide (as ma	(4) Ma				
Ane	(1)	(2) Na	(3) K	(4) Mg				
All3.		NO.						
Sol.	$K + O_2 (excess) \longrightarrow KO_2$							
	Potassium on reaction	on with excess oxygen giv	e superoxide					
			4 : 					
8			AL Ma Si S D					
4.	Identify the correct in	ncreasing order of 1st ioni	sation onorgy of following					
4.	Identify the correct in Al, Mg, Si, S (1) Mg, Al, Si, P, S	, P (2) Al Ma Si S P	(3) Ma Al Si S P	(4) Al Ma Si P S				
4. Ans.	Identify the correct ir AI, Mg, Si, S (1) Mg, AI, Si, P, S	, P (2) Al, Mg, Si, S, P	(3) Mg, Al, Si, S, P	g (4) Al, Mg, Si, P, S				
4. Ans. Sol.	Identify the correct ir AI, Mg, Si, S (1) Mg, AI, Si, P, S (2) Mg 3s ²	, P (2) Al, Mg, Si, S, P	(3) Mg, Al, Si, S, P	g (4) Al, Mg, Si, P, S				
4. Ans. Sol.	Identify the correct in AI, Mg, Si, S (1) Mg, AI, Si, P, S (2) Mg 3s ² AI 3s ² 3p ¹	, P (2) Al, Mg, Si, S, P	(3) Mg, Al, Si, S, P	g (4) Al, Mg, Si, P, S				
4. Ans. Sol.	Identify the correct in AI, Mg, Si, S (1) Mg, AI, Si, P, S (2) Mg $3s^2$ AI $3s^23p^1$ Si $3s^23p^2$, P (2) Al, Mg, Si, S, P	(3) Mg, Al, Si, S, P	9 (4) Al, Mg, Si, P, S				
4. Ans. Sol.	IdentifyAI, Mg, Si, S(1) Mg, AI, Si, P, S(2)MgAl $3s^2$ Al $3s^23p^1$ Si $3s^23p^2$ P $3s^23p^3$, P (2) Al, Mg, Si, S, P	(3) Mg, Al, Si, S, P	g (4) Al, Mg, Si, P, S				
4. Ans. Sol.	IdentifyAI, Mg, Si, S(1) Mg, AI, Si, P, S(2)MgAI $3s^23p^1$ Si $3s^23p^2$ P $3s^23p^3$ S $3s^23p^4$, P (2) Al, Mg, Si, S, P	(3) Mg, Al, Si, S, P	9 (4) Al, Mg, Si, P, S				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resonance.ac.in Cin : U80302RJ2007PLC024029

		AIN-2021 DATE : 20-07-	2021 (SHIFT-1) P	APER-1 MEMORY BASE	D CHEMISTRY
5.	Four moles of a dia by it is zero.	atomic gas is heated fro	m 0°C to 50°C, fir	nd the heat supplied to t	he gas if work done
	(1) 780 R	(2) 500 R	(3) 100 R	(4) 650 R	
Ans.	(2)				
Sol.	w = 0				
	$\Delta E = q_v = nC_v \Delta T$				
	$4 \times \frac{5R}{2} \times \frac{1}{2}$	50 = 500 <mark>R</mark>			
	sepance -				
6.	HNO_3 on reaction P_1O_{10} + HNO_2	with P ₄ O ₁₀ gives an oxid	e 'A'		
	Nature of oxide A i	s			
	(1) acidic	(2) Basic	(3) Neutral	(4) Ampho	teric
Sol.	$P_4O_{10} + 4HNO_3$	$\rightarrow 2N_2O_5 + 4HPO_3$	(0)	(.)	3010100
R	'A				
	Nature of oxide 'A'	is "acidic".			
7.	An equimolar mixtu	ure of benzene (P ^o Benzene	= 70 torr and me	thyl benzene (P ^o Methyl Ber	nzene = 20 torr) is
	prepared, then finc	mole fraction of benze	ne in vapour phase	e.	
Ans.	0.7				
Sol.	$P_{Total} = P_{Benzene}^{O} X_{B}$	enzene + P ^O _{Toluene} X _{Toluene}			
	$=$ (70) $\frac{1}{2}$ + (20) $\frac{1}{2}$				
	= 35 + 10				
	= 45				
	$\frac{1}{P_{Total}} = \frac{Y_{Benzene}}{P_{Benzene}^{O}}$	+ Y _{Toluene} P ^O _{Toluene}			
	$\frac{1}{45} = \frac{Y_{\text{Benzene}}}{70} +$	1-Y _{Benzene} 20			
	$\frac{1}{45} = \frac{2Y_{\text{Benzene}} + 1}{1}$	7(1-Y _{Benzene}) 40			
	1 _ 2Y _{Benzene} +	7 – 7Y _{Benzene}			
	45 1	40			
	$1 - 7 - 5Y_{Benzenet}$				
	4 <mark>5</mark> 140	nce Respo			
	$\frac{1}{9} = \frac{7 - 5Y_{\text{Benzene}}}{28}$	Resenance			
	28 <mark>= 6</mark> 3 – 45 Y _{Benze}	ne Resource			
	$Y_{\text{Benzene}} = \frac{35}{45} = \frac{7}{9}$				
	Y _{Benzene} = 0.7				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
7340010333
f facebook.com/ResonanceEdu
v twitter.com/ResonanceEdu
www.youtube.com/resowatch

100	Find total number of lone	pair of electron on co	entral atom in I_3^-	
ns.	3			
01.				
		Response		
	Total lone pair on central	atom = 3.		
	Which of the following ha	ive positive electrode	notential for reaction M	$^{2+}(aa) + 2e^{-} \rightarrow M$
•	(1) Co	(2) Ni	(3) Cu	$(aq) + 2c \rightarrow W.$
ns.	(3)			
ol.	Cu^{2+} (aq) + 2e ⁻ \longrightarrow Cu		$E_{2,2}^{0} = 0.34V$	
			Cu²⁺/Cu	
0.	Which of the following is	most easily economic	cally refined by Fractiona	al distillation.
	(1) Zn ((2) Ni	(3) Cu	(4) Fe
ns.	(1)			
ol.	"Theory Based"			2 C
	Fractional distillation proc	cess utilizes the boilir	ng point difference betwe	en metal and that of impurity
	Using this process, crude	e zinc containing Cd,	Fe and Pb as impurities	can be refined.
1.	Among the following pair	s which is incorrect re	egarding similarity in pro	perties.
	(1) Be(OH) ₂ , Al(OH) ₃ ((2) NaOH, Ca(OH) ₂	(3) B(OH) ₃ , H ₃ PO ₄	(4) B(OH) ₃ , Mg(OH) ₂
ns.	(4)			
Sol. B(OH) ₃ is H ₃ BO ₃ is acidic in nature.				
	Mg(OH) ₂ is basic in natur	re.		
2	Statement-1 : Dibedral a	angle of H ₂ O ₂ in gas it	s around 90°	
۷.	Statement-2 : Dihedral a	angle of H_2O_2 in gas is	is around 111.5°.	
	are the statements ture o	of false.		
	(1) <mark>Tru</mark> e, True ((2) True, False	(3) False, True	(4) False, False
ns.	(4)			
	н	H		
	95.0 pm	96.8 pm		
	147.5 pm	145.8 pm 90.	Z	
ol.	and the second se	101.9	H	
ol.	94.8 H		and the second	
ol.	H	*		
Sol.	(a) Gas phase	(b) Solid ph		Resonance
ol.	(a) Gas phase (a) H ₂ O ₂ structure in gas dibodral angle is 00.2°	(b) Solid ph phase, dihedral angle	ase e is 111.5°. (b) H ₂ O ₂ stru	ucture in solid phase at 110 K

The dihedral angle of H_2O_2 in gaseous phase is approximate 111.5°. While dihydral angle in solid H_2O_2 is affected by hydrogen bonding and it is 90.2° in solid state.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Toll Free : 1800 258 55555

Educa	
13.	4.5 gram mass of a substance [molar mass = 90 g/mol] is dissolved in 250 ml solution, then molarity of solution is -
Ans.	0.2
Sol.	Molarity (M) = $\frac{W_{\text{solute}} \times 1000}{GMM}$
	Civily solute ~ v _{sol} ⁿ
	$M = \frac{4.5 \times 1000}{90 \times 250} = \frac{4.5 \times 4}{90} = 0.2 \text{ M}.$
14.	What is the magnetic moment (Spin only) of complex [Co(CN) ₆] ^{4–} : [Report your answer to nearest integer]
Ans.	(2)
Sol.	$[Co(CN)_6]^{4-} \Rightarrow Co^{2+} \Rightarrow 3d^7 4s^0$
	So <mark>nu</mark> mber of unpaired electrons = 1.
	$\mu = \sqrt{n(n+2)} = \sqrt{3}$
	μ = 1.73 BM ≈ 2 BM.
15.	10000 KJ energy is needed per day, if heat of combustion of glucose is 2700 KJ/Mole. Then how many
	gram of glucose is needed per day for this : [Report your answer to nearest integer].
Ans.	667
Sol.	$C_6H_{12}O_6 + 6H_2O \longrightarrow 6CO_{2(g)} + 6H_2O, \Delta H = 2700 \text{ KJ /mole}$
	Glucose
	No. of male of glucose require for production of 10,000 K best is = 10,000 male
	No. of mole of glucose require for production of $10,000$ kg heat is $-\frac{1}{2700}$ mole.
	Total mass of glucose = $\frac{10,000}{2700} \times 180 = 666.67$ gram.
16.	The value of ℓ (azimuthal quantum number) for valence shell electron of Ga ⁺ ion is
Ans.	
Sol.	Ga = 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ¹
	$Ga^{+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2$
	Azimuthal Quantum number (ℓ) for valence shell electron is 0.
	esphance' Resphance' Resphance' Resphance'
17	What is the difference in energy between 2^{nd} and 3^{rd} orbit of He ⁺ ion (in eV) is -
	[Report your answer to nearest integer]
4.00	
ANS.	0

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resonance.ac.in Cin : U80302RJ2007PLC024029

	2SONANCe [®]	JEE MAIN-202	1 DATE : 20-07-202	21 (SHIFT-1) PAPER-	1 MEMORY BA	SED CHEMISTRY
Sol.	(E _{He⁺}) _{n=2} =	$= -13.6 \times \frac{(2)}{(2)}$	$\frac{2}{2}$ = -13.6 ev			
	(E _{He+}) _{n=3} = (E _{He+}) _{n=3} –	$(E_{He^+})_{n=2} = 1$	$\frac{2}{2} = -13.6 \times \frac{4}{9}$ $13.6 \left[1 - \frac{4}{9} \right]$			
	$= 13.6 \left[\frac{5}{9}\right]$	= 7.55 eV				
18.	Anion of a co al <mark>so g</mark> ives pr	ompound 'x' gi ecipitate with	ves brown ring test HCI & H ₂ S, then co	and cation gives dee mpound 'x' is	ep blue coloratio	on with NH₄OH and
	(1) Cu(NO ₃)	2 (2) Pb(NO ₃) ₂	(3) Pb(NO ₂) ₂	(4) Zn(N	IO ₃) ₂
Sol.	Nitrates give Cu ²⁺ + 4NH₃	brown ring terms $(aq) \longrightarrow [Cu($	st. NH₃)₄]²+(aq)			
		,	Deep Blue			
	$Cu^{2+} + H_2S$	H ⁺ → Cu⊳S	1			
	04 1120	Plack	•			
		DIACK				
19.	W <mark>hat i</mark> s the v	alue of secon	d excitation energy	of Li ²⁺		
	(1) 108.8 eV	(2	2) 81.6 eV	(3) 13.6 eV	(4) 95.2	2 eV
Ans.	(1)					
Sol.	n = 3 - n = 2 - n = 1 -		 2nd excited state 1st excited state Ground state 			
	$\left[\Delta E_{u^{-2+}}\right]_{l\to3}$	= 13.6 × 2 ² [-	$\frac{1}{n_1^2} - \frac{1}{n_2^2}$			
	tionence	= 13.6 × (3) ² $\left[\frac{1}{1}\right]$	$\left[-\frac{1}{9}\right]$			
	63	$13.6 \times 9 \left[\frac{8}{9} \right]$				
	asignance	$13.6 \times 8 = 10$	8. 8 eV			
			Response			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resonance.ac.in Cin : U80302RJ2007PLC024029

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

Ninhydrin is useful for identification of α -amino acid which react with ninhydrin and give deep blue colour.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

	250000000 JEE MAIN-2021 DATE : 20-07-2021 (SHIFT-1) PAPER-1 MEMORY BASED CHEMISTRY					
25.	Orlon is a :					
	(1) Polyamide (2) Polyester (3) Polyacrylonitrile (4) Polycarbonate					
Ans.						
Sol.	Orlon is a polymer of acrylonitrile also known as PAN					
	$CH_2 = CH - C \equiv N \longrightarrow \begin{pmatrix} CN \\ I \\ -CH_2 - CH - \end{pmatrix}_n$					
	Acrylonitrile PAN or orlon					
26 .	Which of the following is better for green chemistry in day to day life (Domestic Purpose)					
	(1) $Cl_2C = CCl_2$ as dry cleaning agent liquid (2) Liquid CO_2 for cloth cleaning					
	(2) Cl ₂ gas a bleaching agent of paper (4) CCl ₄ as dry cleaning agent					
Ans.	(2)					
Sol.	CCl ₂ = CCl ₂ was earlier used as solvent for dry cleaning agent but it is carcinogen. So liquid CO ₂ is					
	used. Replacement of halogenated solvent by liquid CO ₂ will result in less harm to ground water.					
27.	Which of the following incorrect :					
	(1) Amylose is branched (2) Starch in made up of α -glucose					
	(3) Glycogen is also called animal starch (4) β -glycosidic linkage for cellulose					
Ans.						
28.	How many mole of CH ₃ MgBr are required to convert ethylethanoate to 2-methylpropan-2-ol :					
Ans.	(2)					
	O (i) CH ₃ MgBr OH					
Sal	$ \begin{array}{c c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $					
301.	(ethyl ethanoate)					
	2-methylpropan-2-ol					
20	Which condition is required to show tyndall offect by colloidal solution					
23.	(1) The refrective indice's of the dispersed phase and dispersion medium differ greatly in magnitude					
	(2) The refractive indices of dispersed phase and the dispersion medium are exactly same in magnitude.					
	(2) The refractive indices of the dispersed phase and the dispersion medium do no differ much in					
	magnitude					
	(4) None of these					
Ans.						
Sol	Theory Based					
001.						

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in