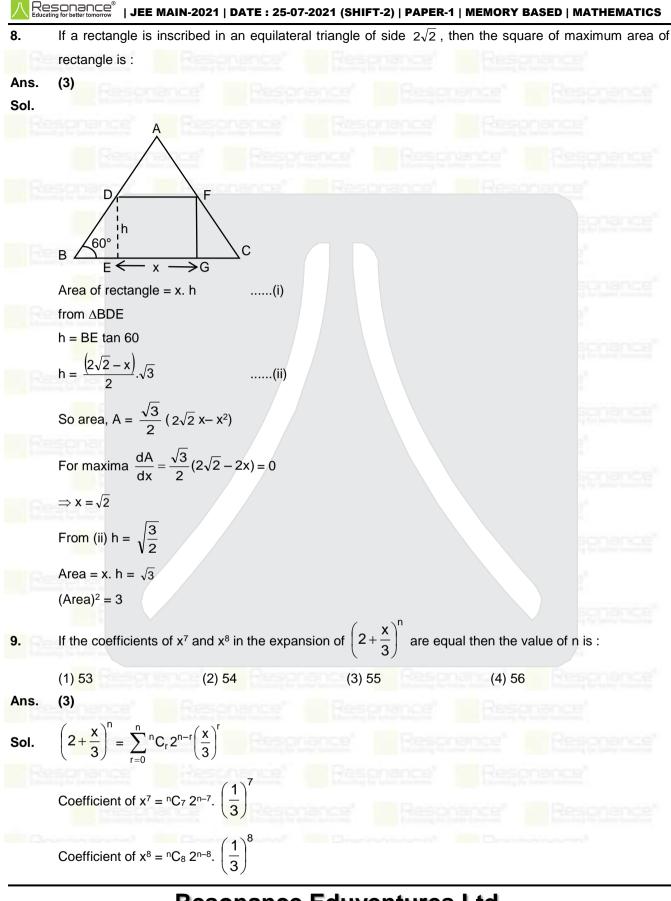


Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in 🛛 🗗 💆 📇 🔞

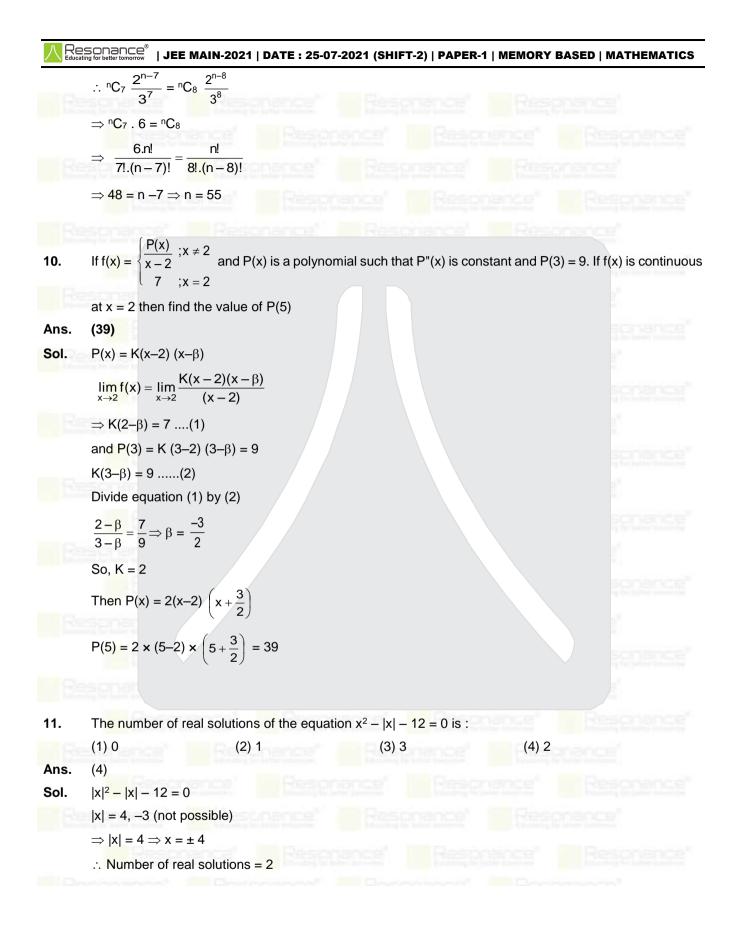
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch


Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blg.resonance.ac.in

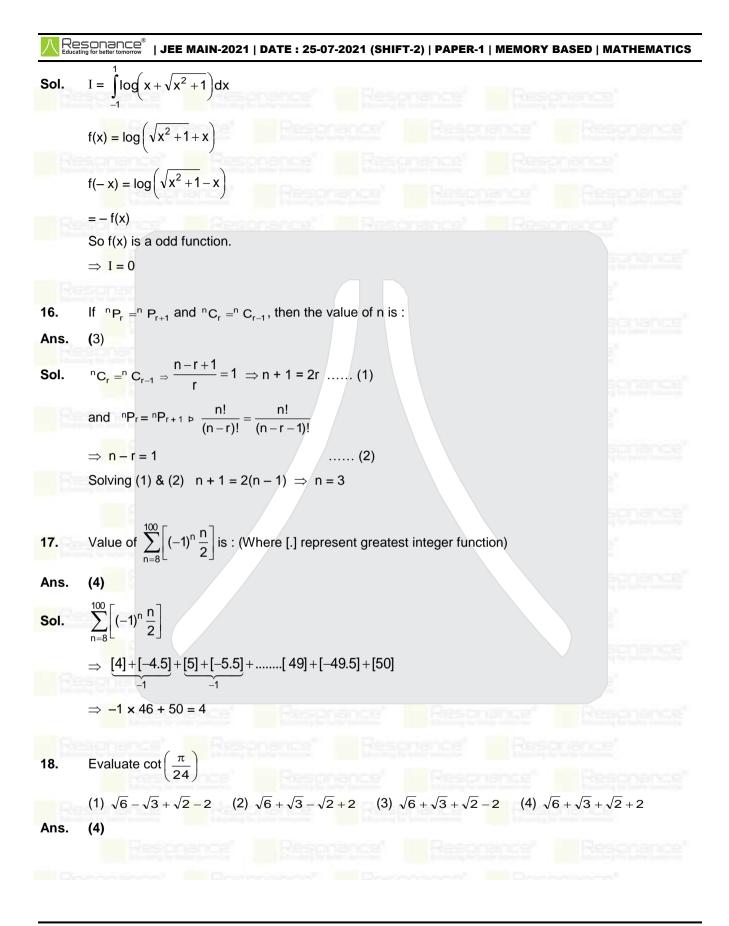
	25000028 JEE MAIN-2021 DATE : 25-07-2021 (SHIFT-2) PAPER-1 MEMORY BASED MATHEMATICS
4.	If \vec{a} and \vec{b} are two vectors such that $ \vec{a} \times \vec{b} = 8$, $ \vec{a} = 2$, $ \vec{b} = 5$, then the value of $ \vec{a}.\vec{b} $ is :
	(1) 6 (2) 3 (3) 12 (4) 9
Ans. Sol.	$ \vec{a} \times \vec{b} = \vec{a} \vec{b} \sin \theta$
124	$8 = 2 \times 5 \times \sin\theta$
	$\sin\theta = \frac{4}{5} \Rightarrow \cos\theta = \pm \frac{3}{5} \Rightarrow \cos\theta = \frac{3}{5}$
	$\left \vec{a}.\vec{b}\right = \left \vec{a}\right \left \vec{b}\right \left \cos\theta\right = 2 \times 5 \times \frac{3}{5} = 6$
5.	If function $f(x) : A \to B$, and $g(x) : B \to C$ are defined such that $(g(f(x)))^{-1}$ exist then $f(x)$ and $g(x)$ are :
	(1) one-one and onto(2) many-one and onto(3) one-one and into(4) many-one and into
Ans. Sol.	(1) Clearly g(f(x)) is one-one onto so f(x) and g(x) both are one-one and onto
6.	If $a + b + c = 1$, $ab + bc + ca = 2$ and $abc = 3$, then the value of $a^4 + b^4 + c^4$ is:
Ans.	13
Sol.	$(a + b + c)^2 = 1$ $\Rightarrow a^2 + b^2 + c^2 + 2(ab + bc + ca) = 1$
	$\Rightarrow a^2 + b^2 + c^2 = -3 \qquad \dots(i)$ $\Rightarrow ab + bc + ca = 2 \qquad \dots(ii)$
	Squaring of equation (ii),
	$\Rightarrow a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} + 2(ab^{2}c + bc^{2}a + ca^{2}b) = 4$ $\Rightarrow a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} + 2abc(a + b + c) = 4$
	$\Rightarrow a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} + 6 = 4$
	$\Rightarrow a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} = -2 \qquad \dots (iii)$ Squaring of equation (i),
	$\Rightarrow a^4 + b^4 + c^4 + 2(a^2b^2 + b^2c^2 + c^2a^2) = 9$
	$\Rightarrow a^4 + b^4 + c^4 - 4 = 9$ $\Rightarrow a^4 + b^4 + c^4 = 13$
7.	Which of the following value is just greater than $\left(1+\frac{1}{10^{100}}\right)^{10}$
_	(1) 2 (2) 3 (3) 4 (4) 5
Ans. Sol.	(2) Let 10 ¹⁰⁰ = n
	So, $\left(1+\frac{1}{n}\right)^{n} = {}^{n}C_{0} + {}^{n}C_{1}\left(\frac{1}{n}\right) + {}^{n}C_{2}\left(\frac{1}{n}\right)^{2} + {}^{n}C_{3}\left(\frac{1}{n}\right)^{3} + \dots$
	$= 1 + 1 + \frac{n(n-1)}{2n^2} + \frac{n(n-1)(n-2)}{6n^3} + \dots$
	$\Rightarrow \left(1+\frac{1}{n}\right)^n > 2$
	Also $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e < 3.$
	n→∞ \ n /


Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
7340010333
f facebook.com/ResonanceEdu
v twitter.com/ResonanceEdu
www.youtube.com/resowatch

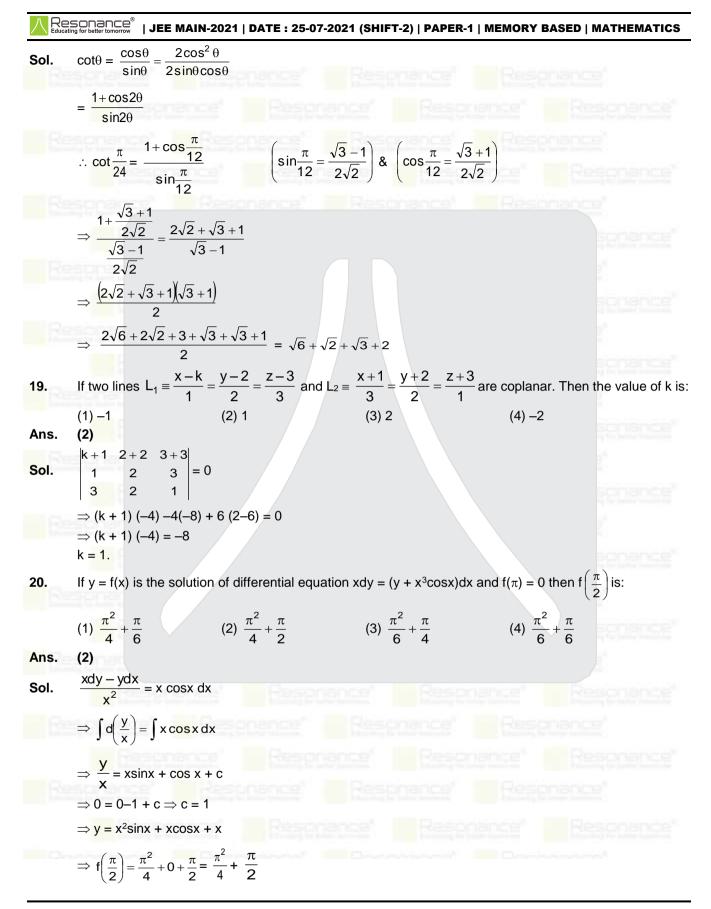
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu vww.youtube.com/resonance.ac.in | Cin : U80302RJ2007PLC024029


Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch

2.	A coin is tossed n ti	-		ead is greater than 0.9, t				
	value of n is :							
	(1) 3	(2) 5	(3) 4	(4) 2				
ns.	(3)							
	$(1)^n$							
ol.	$1 - \left(\frac{1}{2}\right)^{n} > 0.9$							
	$\Rightarrow 0.1 > \left(\frac{1}{2}\right)^n \Rightarrow$	n = 4						
3.	Negation of the sta	atement :						
15.	Negation of the statement : "We will play football only if ground is not wet and there is no sunlight" is:							
		otball if ground is wet otball if ground is wet	and there is no sunlight	t.				
			ot wet and we will not p	lay football.				
		ht or ground is wet an	nd we will play football.					
ns. iol.	(4) p: We will play football.							
12	q: Ground is not wet.							
	r: There is no sunlight. \therefore Given statement is p \rightarrow (q \land r)							
		s $p \land \sim (q \land r)$						
	$p \wedge (\sim q \vee \sim r)$	3 p/ ~ (q/1)						
			If ${}^{n}C_{0} + 3{}^{n}C_{1} + 5{}^{n}C_{2} + 7{}^{n}C_{3} + \dots$ till (n + 1) terms, is equal to 2 ¹⁰⁰ .101, then the value of $2\left[\frac{n}{2}\right]$					
4.	$\int_{0}^{n} C_{0} + 3^{n} C_{4} + 5^{n} C_{5}$	$C_0 + 7^n C_0 + \dots + t$	till (n + 1) terms, is eau	al to 2^{100} .101. then the	value of 2^{n}			
4.	$\int_{0}^{\infty} f^{n}C_{1} + 5^{n}C_{1} + 5^{n}C_{1}$	$C_2 + 7^n C_3 + \dots t$	till (n + 1) terms, is equ	hal to 2^{100} .101, then the	value of $2\left[\frac{n}{2}\right]$			
4.	$\int_{0}^{1} \int_{0}^{n} C_{0} + 3^{n} C_{1} + 5^{n} C_{1}$ (where [.] represer		till (n + 1) terms, is equ	al to $2^{100}.101$, then the	value of $2\left[\frac{n}{2}\right]$			
4.			till (n + 1) terms, is equ (3) 96	ual to 2 ¹⁰⁰ .101, then the (4) 100	value of $2\left[\frac{n}{2}\right]$			
	(where [.] represer	nts G.I.F.)			value of $2\left[\frac{n}{2}\right]$			
	(where [.] represer (1) 98 (4)	nts G.I.F.) (2) 97	(3) 96 n	(4) 100	value of $2\left[\frac{n}{2}\right]$			
<mark>n</mark> s.	(where [.] represer (1) 98 (4)	nts G.I.F.) (2) 97	(3) 96 n	(4) 100	value of 2 $\left[rac{n}{2} ight]$			
ans.	(where [.] represer (1) 98 (4)	nts G.I.F.) (2) 97		(4) 100	value of $2\left[\frac{n}{2}\right]$			
ans.	(where [.] represent (1) 98 (4) ${}^{n}C_{0} + 3{}^{n}C_{1} + 5{}^{n}C_{2}$	nts G.I.F.) (2) 97 + 7 ⁿ C ₃ + (n -	(3) 96 + 1) terms = $\sum_{r=0}^{n} (2r + 1)$.	(4) 100 ⁿ C _r	value of $2\left[\frac{n}{2}\right]$			
ns.	(where [.] represer (1) 98 (4)	nts G.I.F.) (2) 97 + 7 ⁿ C ₃ + (n -	(3) 96 + 1) terms = $\sum_{r=0}^{n} (2r + 1)$.	(4) 100	value of $2\left[\frac{n}{2}\right]$			
ns.	(where [.] represent (1) 98 (4) ${}^{n}C_{0} + 3{}^{n}C_{1} + 5{}^{n}C_{2}$	nts G.I.F.) (2) 97 + 7 ⁿ C ₃ + (n - C _r	(3) 96 + 1) terms = $\sum_{r=0}^{n} (2r + 1)$.	(4) 100 ⁿ C _r	value of $2\left[\frac{n}{2}\right]$			
4. Ans. Sol.	(where [.] represent (1) 98 (4) ${}^{n}C_{0} + 3{}^{n}C_{1} + 5{}^{n}C_{2}$ $= 2\sum_{r=0}^{n} r^{n}C_{r} + \sum_{r=0}^{n} r^{n}C_{r}$	nts G.I.F.) (2) 97 + 7 ⁿ C ₃ + (n - C _r	(3) 96 + 1) terms = $\sum_{r=0}^{n} (2r + 1)$.	(4) 100 ⁿ C _r	value of $2\left[\frac{n}{2}\right]$			
ns. Sol.	(where [.] represent (1) 98 (4) ${}^{n}C_{0} + 3{}^{n}C_{1} + 5{}^{n}C_{2}$ $= 2\sum_{r=0}^{n} r^{n}C_{r} + \sum_{r=0}^{n} r^{n}C_{r}$ $= 2n \cdot 2^{n-1} + 2^{n} = (r)$	the formula of the f	(3) 96 + 1) terms = $\sum_{r=0}^{n} (2r + 1)$.	(4) 100 ⁿ C _r				
<mark>n</mark> s.	(where [.] represent (1) 98 (4) ${}^{n}C_{0} + 3{}^{n}C_{1} + 5{}^{n}C_{2}$ $= 2\sum_{r=0}^{n} r^{n}C_{r} + \sum_{r=0}^{n} r^{n}C_{r}$	the formula of the f	(3) 96 + 1) terms = $\sum_{r=0}^{n} (2r + 1)$.	(4) 100 ⁿ C _r				
ns. ol.	(where [.] represent (1) 98 (4) ${}^{n}C_{0} + 3{}^{n}C_{1} + 5{}^{n}C_{2}$ $= 2\sum_{r=0}^{n} r^{n}C_{r} + \sum_{r=0}^{n} r^{n}C_{r}$ $= 2n \cdot 2^{n-1} + 2^{n} = (r)$	the formula of the f	(3) 96 + 1) terms = $\sum_{r=0}^{n} (2r + 1)$	(4) 100 ⁿ C _r				


Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu vww.youtube.com/resowatch blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Resonance* | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED | MATHEMATICS If three vector $\hat{i} + \hat{k}$, $\hat{b}\hat{i} + \hat{b}\hat{j} + c\hat{k}$ and $\hat{a}\hat{i} + \hat{a}\hat{j} + \hat{b}\hat{k}$ are coplanar then 21. (3) $c^2 = ab$ (1) $a^2 = bc$ (2) $b^2 = ac$ (4) ab = cAns. (2) 1 0 1 Sol. b b c = 0a a b $1(b^2 - ac) + 1 (ab-ab) = 0 \Rightarrow b^2 = ac$ If $\vec{x} & \vec{y}$ are two vectors such that $|\vec{x}| = |\vec{y}| & |\vec{x} - \vec{y}| = n |\vec{x} + \vec{y}|$, then the angle between $\vec{x} & \vec{y}$ 22. (2) $\cos^{-1}\left(\frac{n^2+1}{1-n^2}\right)$ (3) $\cos^{-1}\left(\frac{n+1}{n-2}\right)$ (4) $\cos^{-1}\left(\frac{1-n^2}{n^2+1}\right)$ (1) $\cos^{-1}\left(\frac{1-n}{1+n}\right)$ Ans. (4) Sol. $|\vec{x} - \vec{y}| = n|\vec{x} + \vec{y}|$ $x^{2} + y^{2} - 2xy \cos\theta = n^{2} (x^{2} + y^{2} + 2xy \cos\theta)$ $x^{2}(1+1-2\cos\theta) = n^{2}x^{2}(1+1+2\cos\theta)$ $2(1-n^2) = 2\cos\theta (n^2 + 1)$ $\cos\theta = \frac{1-n^2}{n^2+1}$ $\theta = \cos^{-1}\left(\frac{1-n^2}{n^2+1}\right)$ If combined equation of line y = p(x) and y = q(x) can be written as (y - p(x)) (y - q(x)) = 0 then angle 23. bisector of $x^2 - 4xy - 5y^2 = 0$ is : (1) $x^2 + 3xy + y^2 = 0$ (2) $x^2 + 3xy - y^2 = 0$ (3) $x^2 - 3xy + y^2 = 0$ (4) $x^2 - 3xy - y^2 = 0$ (2) Ans. Equation of angle bisector of homogeneous equation of pair of straight line $ax^2 + 2hxy + by^2$ is Sol. $\frac{x^2 - y^2}{a - b} = \frac{xy}{b}$ for $x^2 - 4xy - 5y^2 = 0$ a = 1, h = -2, b = -5so, equation of angle bisector is $\frac{x^2 - y^2}{1 - (-5)} = \frac{xy}{-2}$ $x^2 - y^2 + 3xy = 0$

so, combined equation of angle bisector is $x^2 + 3xy - y^2 = 0$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blg.resonance.ac.in

24.	Equation of a circle is $\text{Re}(z^2) + 2(\text{Im}(z))^2 + 2\text{Re}(z) = 0$ where $z = x + \text{iy}$ and a line passes through the vertex of parabola $x^2 - 6x + y + 13 = 0$ and the centre of circle, then y intercept of the line is :					
) 1				
Ans.	(1) - 2 (2) - 1 (3) 2 (4)					
Sol.	z = (x + iy)					
	So, $z^2 = x^2 - y^2 + i2xy$					
	Now $x^2 - y^2 + 2y^2 + 2x = 0$					
	$x^{2} + y^{2} + 2x = 0 \Rightarrow$ centre = (-1, 0) and $x^{2} - 6x + y + 13 = 0$					
	$(x-3)^2 = -(y+4)$					
	Vertex (3, –4)					
	-4-0					
	$\therefore Equation of line is (y-0) = \frac{-4-0}{3+1}(x+1) \Rightarrow 4y = -4(x+1)$					
	X Y I					
	$x + y + 1 = 0 \Rightarrow \frac{x}{-1} + \frac{y}{-1} = 1$					
25	(5x+1); x < 2					
25.	If f(x) = $\begin{cases} 5x+1 & ; x < 2\\ \int_0^x (5+ 1-t) dt & ; x \ge 2 \end{cases}$					
	(1) $f(x)$ is differentiable $\forall x \in \mathbb{R}$					
	(2) $f(x)$ is continuous at x = 2 but not differentiable at x = 2					
	(2) $f(x)$ is continuous at $x = 2$ but not differentiable at $x = 2$ (3) $f(x)$ is continuous at $x = 2$ but not differentiable at $x = 1$.					
	(4) $f(x)$ is neither continuous nor differentiable at $x = 2$.					
Ans.	(2)					
Sol.						
oon	$LHL = \lim_{x \to 2^{-}} (5x + 1) = 11$					
	RHL = $\lim_{x \to 2^+} \int_0^x (5+ 1-t) dt = \int_0^1 (5+(1-t)) dt + \int_1^2 (5-(1-t)) dt = 11$					
	f(2) = 11					
	So, $f(x)$ is continuous at $x = 2$					
	LHD at x = 2 is $\frac{d}{dx}(5x+1)\Big _{x=2} = 5$					
	RHD at x = 2 is $\frac{d}{dx} \int_{0}^{x} (5+ 1-t) dt = 6$					
	Ix=2					
	LHD \neq RHD, So function is not differentiable at x = 2.					

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
7340010333
f facebook.com/ResonanceEdu
v twitter.com/ResonanceEdu
www.youtube.com/resowatch