

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blg.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blg.resonance.ac.in

Resonance[®] | JEE MAIN-2021 | DATE : 20-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

6. R	A uniform rod of y	<mark>ou</mark> ng's modulus Y is stre	tched by two tension T ₁	and T ₂ such th	nat rods get expanded		
	to length L1 and L	² respectively. Find initial	length of rod ?				
	(1) $\frac{L_1T_1 - L_2T_2}{T_1 - T_2}$	(2) $\frac{L_2T_1 - L_1T_2}{T_2 - T_1}$	(3) $\frac{L_1T_2 - L_2T_1}{T_2 - T_1}$	(4) $\frac{L_1}{T_1} \times$	$\frac{T_2}{L_2}$		
Ans.	(3)						
Sol.	Le <mark>t ini</mark> tial length of	f rod be L ₀ and Area A.					
	$\Delta \mathbf{s} = \mathbf{T} - \mathbf{v} \Delta \ell$						
	A \overline{A} $\overline{\ell}$						
	So, $\frac{T_1}{A} = \frac{Y(L_1 - L_0)}{L_0}$	<u>o)</u>					
	$\frac{T_2}{A} = \frac{Y(L_2 - L_0)}{L_0}$						
	Dividing						
	$\frac{T_1}{T_2} = \frac{L_1 - L_0}{L_2 - L_0} ; T$	$T_1L_2 - T_1L_0 = T_2L_1 - T_2L_0$; $L_0 = \frac{L_1 T_2 - L_2 T_1}{T_2 - T_1}$				
7. R	Time (T), velocity	(C) and angular momentime. In term of these, dir	ntum (h) are choosen as nension of mass would b	fundamental e :	quantities instead of		
	(1) $[M] = [T^{-1}C^{-2}h]$ (2) $[M] = [T^{-1}C^{2}h]$						
	(3) [M] = [T ⁻¹ C ⁻² h ⁻	-1]	(4) $[M] = [T^{-1}C^{-2}h]$				
Ans.	(1)						
Sol.	M <mark>∝ T</mark> ×C ^y h²						
	$M^{0}L^{0}T^{0}=T^{x}\left[LT^{-1}\right]$	^y [ML ² T ⁻¹] ^z					
	$M^{1}L^{0}T^{0} = T^{x-y-z} L^{y+z}$	^{-2z} M ^z					
	On comparing pov	wers					
	esonar ^z =1	.(1)					
	x – y – z =	= 0(2)					
	y + 2z = 0	tomorrow(3) Educating for bett					
	2 S C N A Y + 2 × 1 :						
	y x - (-2)-1	= -2 = 0					
	x = -1						
	$M \propto T^{-1}C^{-1}$	⁻² h ¹					
	[M] ∝ [T ⁻¹	C ⁻² h]					

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

11. Re	For a body in pure ro	lling, its rota	ational kinetio	c energy is	1/2 times of i	t <mark>s</mark> translatio	n kinetic energy. They
	body should be ?	(2) Ring		(3) solic	sphere	(4) Hollo	w sphere
Ans.	e:(1) nance	Resona		Reson	ance	Reson	ance
Sol.	G <mark>iven</mark>						
	$\frac{1}{2}I\omega^2 = \frac{1}{2} \times \frac{1}{2}mv^2$						
	as <mark>v =</mark> Rω (pure rollin	g					
	$\frac{1}{2}I\omega^2 = \frac{1}{4}mR^2\omega^2$						
	$I = \frac{1}{2} m R^2$						
	Thus, solid cylinder.						
12.	Magnetic susceptibilit	y of materia	al is 499 & µo	= 4π × 10 ⁻	7. SI unit then	find µr	
	(1) 500	(2) 400		(3) 300		(4) 200	
Ans.	(1)						
Sol.	$\mu_r = 1 + \chi$						
	= 1 + 499 = 500						
13.	A plane electromagn	etic wave	travels in fre	e space. I	Electric field i	$\vec{E} = E_0 \hat{i}$	and magnetic field is
	represented by $\vec{B} - \vec{F}$	k. What i	s the unit ve	ctor along	the direction (of propagat	ion of electromagnetic
	wave?	, ₀		otor along		or propugut	
	ating for better to	(2) – k		(3) – î		(4) ƙ	
Ans.	(3)	(-)		(-)]			
Sol	Direction of EM wave	in aivon by	direction of	ĒvĒ			
501.		in given by					
	Unit vector in direction	n Ē×Ē ⇒	$\frac{\mathbf{E} \times \mathbf{B}}{\left \mathbf{\vec{E}} \times \mathbf{\vec{B}} \right }$				
		\Rightarrow	$\frac{E_0\hat{i}\timesB_0\hat{k}}{E_0B_0ssin90}$				
			- <u>0</u> -0 01100				
			i×k −î				
			nee"				

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

14. R	Two satellites	o <mark>f m</mark> ass	s M_A and M_B a	are <mark>revo</mark> lving	around a p	olan <mark>et of</mark> ma	iss M in ra	dius R_A and R_B	
	respectively. Then ?								
	(1) <mark>Т</mark> а > Тв		Ra <mark>> R</mark> b	(2) T _A > T _B	ifEducation	Ma > Mb			
	(3) $T_A = T_B$	if 🖁	Ma > Mb	(<mark>4) T</mark> a > Tb	onaince	Ra < Rb			
Ans.	(1) Resc								
Sol.	$T \propto r^{3/2}$								
	$\frac{T_A}{T_A} \propto \left(\frac{R_A}{R_A}\right)^{3/2}$	2							
	T _B (R _B)								
15.	If N₀ active nue	clei beco	mes $\frac{N_0}{16}$ in 80	days. Find ha	If life of nucl	lei ?			
	(1) <mark>40</mark> days		(2) 20 days	(3)	60 days	(4)	30 days		
Ans.	(2)								
Sol.	$N_0 \xrightarrow{t_{1/2}} \frac{N_0}{2}$	$\xrightarrow{t_{1/2}}$	$\frac{N}{4} \xrightarrow{t_{1/2}} \frac{N}{8} \xrightarrow{t}$	$\frac{1/2}{16}$					
	$4 \times t_{1/2} = 80 \text{ dat}$	iys							
	t _{1/2} = 20 da	iys							
16.	A satellite is re	evolving a	around a plane	t in an orbit of	radius R. S	Suddenly rad	ius of orbit	becomes 1.02 R	
-	th <mark>en w</mark> hat will	be perce	ntage change i	n its time peri	od of revolut	tion ?			
Ans.		2/2							
Sol.	As I∝ R ⁱ	3/2 D2/2							
	$I_1 = K$	R ^{3/2}							
Response $\frac{\Delta T}{T} = \frac{3}{2} \times \frac{\Delta R}{R} = 3\%$									
17.	A person walk	s up a st	ationary escala	tor in the time	e t1. If he rer	mains statior	ary on the	escalator, then it	
	can take him ι	ıp in time	t ₂ . Determine t	the time it wou	ıld take to w	alk up on the	e moving es	scalator ?	
	$t_1 t_2$		$t_1 t_2$	(2)	$2t_1t_2$		2t ₁ t ₂		
	$(1) \frac{1}{t_1 + t_2}$		$\frac{(2)}{t_1 - t_2}$	Res	$t_1 + t_2$		$\overline{t_1 - t_2}$		
Ans.	(1) Response								

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

🔨 Resonance" | JEE MAIN-2021 | DATE : 20-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

Resonance" | JEE MAIN-2021 | DATE : 20-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

26. Re I – V characteristic curve of a diode in forward bias is given in fig. find out dynamic resistance -

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in 🛛 🗗 💆 🚨 🕔