

## Resomance



## (Main)

 PAPER-1 (B.E./B. TECH.)

# COMPUTER BASED TEST (CBT) Memory Based Questions \& Solutions 

Date: 20 July, 2021 (SHIFT-1) | TIME : (9.00 a.m. to 12.00 p.m) Duration: 3 Hours | Max. Marks: 300

## SUBJECT: PHYSICS

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

## PART : PHYSICS

1. A deuteron \& $\alpha$-particle both enters in a region of magnetic field perpendicular to it with same kinetic energy find the ratio of their radii ?
(1) 2
(2) $2 \sqrt{2}$
(3) $\sqrt{2}$
(4) $\frac{1}{2}$

Ans. (3)
Sol. $r=\frac{m v}{q B}=\frac{\sqrt{2 m K}}{q B}$
$r \propto \frac{\sqrt{m}}{q}$
$\mathrm{m}_{\alpha}=2 \mathrm{~m}_{d}$
$q_{\alpha}=2 q_{d}$
$\frac{r_{d}}{r_{\alpha}}=\frac{\sqrt{m_{d}}}{q_{d}} \times \frac{2 q_{d}}{\sqrt{2 m_{d}}}=\sqrt{2}$
2. In the given arrangement, spring of spring constant $100 \mathrm{~N} / \mathrm{m}$ is compressed by 0.5 m . The height of the arrangement is 2 m . A basket is placed at distance $d$ such that after projection, ball will fall in the basket. If the mass of the ball is 100 gm , find maximum value of d ?

(1) 5 m
(2) 10 m
(3) 15 m
(4) 20 m

Ans. (2)
Sol. By energy conservation
$\frac{1}{2} k x^{2}=\frac{1}{2} m v^{2} \Rightarrow v=x \sqrt{\frac{k}{m}} \quad v=0.5 \times \sqrt{\frac{100}{0.1}}=5 \sqrt{10} \mathrm{~m} / \mathrm{s}$
Time of flight of ball $\mathrm{T}=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}=\sqrt{\frac{2 \times 2}{10}}=\frac{2}{\sqrt{10}} \mathrm{sec}$
Range of ball $s=u t$
$d=5 \sqrt{10} \times\left(\frac{2}{\sqrt{10}}\right)=10 \mathrm{~m}$

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
3. When a disc slides on smooth inclined surface from rest, the time taken to move from $A$ to $B$ it $t_{1}$. When disc performs pure rolling from rest then time taken to move from $A$ to $B$ is $t_{2}$. If $\frac{t_{2}}{t_{1}}=\sqrt{\frac{3}{x}}$ find $x$.

Ans. 2
Sol. When disc slides $a_{1}=g \sin \theta$ So $S=u t_{1}+\frac{1}{2} a_{1} t_{1}^{2}=\frac{1}{2} g \sin \theta . t_{1}^{2}$
When disc do pure rolling $a_{2}=\frac{g \sin \theta}{1+k^{2} / R^{2}}=\frac{g \sin \theta}{1+1 / 2}=\frac{2}{3} g \sin \theta$
So $S=u t_{2}+\frac{1}{2} a_{2} t_{2}^{2}=\frac{1}{2} \cdot \frac{2}{3} g \sin \theta \cdot t_{2}^{2}$
From (1) \& (2)
$\frac{t_{2}}{t_{1}}=\sqrt{\frac{3}{2}}$
4. We have a charge of magnitude $Q$. If we divide charge in two parts, what should be their ratio so that there will be max repulsion force between them ?
(1) $1: 1$
(2) $2: 1$
(3) $1: 2$
(4) $3: 2$

Ans.
Sol.

$F=\frac{K q_{1} q_{2}}{r^{2}}=\frac{K(q)(Q-q)}{r^{2}}$
$\frac{d F}{d q}=0$
$Q-2 q=0$
$q=Q / 2$
ratio $=1: 1$
5. Four planks are arranged in a lift going upwards with an acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$ as shown in figure. Find the normal reaction applied by the lift on 10 kg block : $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

(1) 500
(2) 700
(3) 672
(4) 800

## Ans. (2)

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol.

$\mathrm{N}-70 \mathrm{~g}=70 \times 0.2$
$\mathrm{N}=70(\mathrm{~g}+0.2)$
$\mathrm{N}=700$
6. For given PV curve, Find net heat taken by gas system in cyclic process.

(1) $25 \pi$
(2) $50 \pi$
(3) $75 \pi$
(4) $100 \pi$

Ans. (4)
Sol. $\Delta \mathrm{Q}=\mathrm{W}+\Delta \mathrm{U}=\mathrm{W}=$ area enclosed by the curve
$\Delta \mathrm{Q}=\pi \mathrm{ab}$
$=\left[\frac{40-20}{2} \times 10^{3}\right] \times\left[\frac{40-20}{2} \times 10^{-3}\right]$
$=100 \pi$ Joule
7. A butterfly is flying in North-East with $4 \sqrt{2} \mathrm{~m} / \mathrm{s}$ w.r.t. wind. Wind is blowing at $1 \mathrm{~m} / \mathrm{s}$ southwards. Displacement of butterfly in 3 s is
(1) 10 meter
(2) 15 meter
(3) 20 meter
(4) 5 m

Ans. (2)
Sol.

$\vec{D}=v_{F, G} \times T$
$=\{(4 \hat{i}+4 \hat{j}+(-\hat{j})\} \times 3 s$
$=(4 \hat{i}+3 \hat{j}) \times 3 s$
$|\vec{D}|=15 m$

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
8. In the given circuit, find current passing through $6 \Omega$ resistor

(1) 15.67
(2) 16.50
(3) 18.47
(4) 10.46

Ans. (1)
Sol.


Let potential at junction point $=x$
By KCL $\sum \mathrm{i}_{\mathrm{in}}=0$

$$
\begin{aligned}
& \Rightarrow \quad \frac{160-x}{4}+\frac{90-x}{5}+\frac{0-x}{6}=0 \\
& \Rightarrow \quad \frac{160 \times 15-15 x+90 \times 12-12 x+0-10 x}{60}=0 \\
& \Rightarrow \quad 37 x=2400+1080 \\
& x=94.05 \\
& \text { So current is }=\frac{x}{6} \\
& =\frac{94.05}{6}=15.67
\end{aligned}
$$

9. In the given system, uniform magnetic field exists from $x=0$ to $x=b$. A rod is first moved from $x=0$ to $x=2 b$ uniformly and then moved reverse uniformly from $x=2 b$ to $x=0$. Match the quantities with proper curves


## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Column-I
(a) Flux ( $\phi$ )
(b) EMF (e)
(c) Power (P)
(1) (a) - (iii), (b) - (i), (c) - (ii)
(3) (a) - (iii), (b) - (ii), (c) - (i)

Column-II
(i)

(ii)

(iii)


Ans. (1)
Sol. Flux $=\phi=B \cdot A$
$\Rightarrow \quad B \times A \cos 0$
Where $\mathrm{A}=\ell \mathrm{vt}$

$$
\phi=\mathrm{B} \ell \mathrm{vt}
$$

One rod go at $x>b$ then $\phi$ stop changing this constant flux $=B \ell b$.
When rod come back and when $x<b$ flux start decreasing so graph $\phi v / s t$

b $\rightarrow$ (ii)
$\mathrm{e}=\frac{-\mathrm{d} \phi}{\mathrm{dt}}$
$\mathrm{e}=-$ slope of $\phi-\mathrm{t}$ graph
In $0-\mathrm{t}_{1}$ graph slope +ve and constant so $\mathrm{e}=$ negative and zero.
in $t_{2}-t_{3}$ slope of $\phi-t$ is negative and constant so $e=$ positive and zero


## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 18002585555 Q 7340010333 facebook.com/ResonanceEdu $y$ twitter.com/ResonanceEdu yute www.youtube.com/resowatch -3 blog.resonance.ac.in

Power $=\frac{e^{2}}{R}$
Resistance is only of rod so $R$ of the circuit is constant

$$
P=\frac{B^{2} \ell^{2} v^{2}}{R}=\text { constant }
$$


10. A uniform rod of young's modulus $Y$ is stretched by two tension $T_{1}$ and $T_{2}$ such that rods get expanded to length $L_{1}$ and $L_{2}$ respectively. Find initial length of rod?
(1) $\frac{L_{1} T_{1}-L_{2} T_{2}}{T_{1}-T_{2}}$
(2) $\frac{L_{2} T_{1}-L_{1} T_{2}}{T_{2}-T_{1}}$
(3) $\frac{L_{1} T_{2}-L_{2} T_{1}}{T_{2}-T_{1}}$
(4) $\frac{L_{1}}{T_{1}} \times \frac{T_{2}}{L_{2}}$

Ans. (3)
Sol. Let initial length of rod be $L_{0}$ and Area A.
As $\frac{T}{A}=Y \frac{\Delta \ell}{\ell}$
So, $\frac{T_{1}}{A}=\frac{Y\left(L_{1}-L_{0}\right)}{L_{0}}$
$\frac{T_{2}}{A}=\frac{Y\left(L_{2}-L_{0}\right)}{L_{0}}$
Dividing
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{L}_{1}-\mathrm{L}_{0}}{\mathrm{~L}_{2}-\mathrm{L}_{0}} ; \mathrm{T}_{1} \mathrm{~L}_{2}-\mathrm{T}_{1} \mathrm{~L}_{0}=\mathrm{T}_{2} \mathrm{~L}_{1}-\mathrm{T}_{2} \mathrm{~L}_{0} ; \quad \mathrm{L}_{0}=\frac{\mathrm{L}_{1} \mathrm{~T}_{2}-\mathrm{L}_{2} \mathrm{~T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}$
11. If $\vec{A} \cdot \vec{B}=|\vec{A} \times \vec{B}|$; Find $|\vec{A}-\vec{B}|$
(1) $\sqrt{A^{2}+B^{2}-\sqrt{2} A B}$
(2) $\sqrt{A^{2}+B^{2}+\sqrt{2} A B}$
(3) $A-B$
(4) $A+B$

Ans. (1)
Sol. $\vec{A} \cdot \vec{B}=|\vec{A} \times \vec{B}|$

$$
\begin{array}{rlrl} 
& \Rightarrow & A B \cos \theta & =A B \sin \theta \\
\therefore & \theta=45^{\circ} \\
\therefore & & |\vec{A}-\vec{B}| & =\sqrt{A^{2}+B^{2}-2 A B \cos 45^{\circ}} \\
& & =\sqrt{A^{2}+B^{2}-\sqrt{2} A B}
\end{array}
$$

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
12. In the L-C-R series A.C. circuit shown fellow, current leads source voltage by $45^{\circ}$. Find capacitance of the capacitor.

(1) 2.1 mF
(2) 3.33 mF
(1)

Sol.

$\tan 45^{\circ}=\frac{V_{0 C}-V_{0 L}}{V_{O R}}=\frac{X_{C}-X_{L}}{R}$
$R=\frac{1}{\omega C}-\omega L$
$0.1 \Omega=\frac{1}{300 \mathrm{C}}-3 \times 10^{-3} \times 300$
$\Rightarrow \mathrm{C}=3.33 \mathrm{mF}$ (approx)
13. A radioactive material having number of active nuclei $N$ is decaying by two processes, one with half-life of 1400 yr and other with half-life of 700 yr . After how much time number of active nuclei will be $\mathrm{N} / 3$ ?
(1) 520 yr
(2) 740 yr
(3) 470 yr
(4) 640 yr

Ans. (2)

$$
1400 \text { year } \rightarrow \mathrm{A}
$$

Sol.

$-\frac{\mathrm{dN}_{\mathrm{x}}}{\mathrm{dt}}=\lambda_{1} \mathrm{~N}_{\mathrm{x}}+\lambda_{2} \mathrm{~N}_{\mathrm{x}}$
$\int_{N}^{N / 3} \frac{d N_{x}}{N_{x}}=\int_{0}^{t}\left(\lambda_{1}+\lambda_{2}\right) d t$
$\ln 3=\left(\frac{\ln 2}{1400}+\frac{\ln 2}{700}\right) t$
$t=\frac{\ln 3}{\ln 2} \times \frac{1400}{3}=740$ year

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
14. In the given circuit find current 'I' passing through Zener diode?

(1) 0.445 A
(2) 0.345 A
(3) 0.245 A
(4) 0.145 A

Ans. (1)
Sol.

$I=\frac{500-30}{1000}=0.47 \mathrm{~A}$
$I^{\prime}=\frac{30}{2000}=0.015$
$I=I_{z}+I^{\prime}$
$\mathrm{I}_{\mathrm{z}}=\mathrm{I}-\mathrm{I}=0.47-0.015=0.445 \mathrm{~A}$
15. The wave number of the spectral line in the emission spectrum of hydrogen will be equal to $8 / 9$ times of the Rydberg's constant. Then the electron jumps from
(1) $5 \rightarrow 2$
(2) $5 \rightarrow 3$
(3) $3 \rightarrow 1$
(4) $4 \rightarrow 2$

Ans. (3)
Sol. $\bar{v}=R z^{2}\left(\frac{1}{n_{L}^{2}}-\frac{1}{n_{H}^{2}}\right)$
If $n_{L}=1, n_{H}=3 ; \bar{v}=R .1\left[\frac{1}{1}-\frac{1}{(3)^{2}}\right] ; \quad \bar{v}=\frac{8}{9} R$
16. A vehicle moving with velocity $v$ and releasing sound of frequency 400 Hz . Listening the reflected sound from a wall of frequency 500 Hz . Find the velocity of vehicle v.

(1) $36.67 \mathrm{~m} / \mathrm{s}$
(2) $30.12 \mathrm{~m} / \mathrm{s}$
(3) $22.37 \mathrm{~m} / \mathrm{s}$
(4) $20.25 \mathrm{~m} / \mathrm{s}$

Ans. (1)

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
cy received by wall $f^{\prime}=\left(\frac{v_{s}}{v_{s}-v}\right) f$
Reflected frequency received by man is $f^{\prime \prime}=\left(\frac{v_{s}+v}{v_{s}}\right) f^{\prime}$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{f}^{\prime \prime}=\left(\frac{\mathrm{v}_{\mathrm{s}}+\mathrm{v}}{\mathrm{v}_{\mathrm{s}}}\right)\left(\frac{\mathrm{v}_{\mathrm{s}}}{\mathrm{v}_{\mathrm{s}}-\mathrm{v}}\right) \mathrm{f}_{0} \Rightarrow \quad \mathrm{f}^{\prime \prime}=\left(\frac{\mathrm{v}_{\mathrm{s}}+\mathrm{v}}{\mathrm{v}_{\mathrm{s}}-\mathrm{v}}\right) \mathrm{f}_{0} \Rightarrow \quad 500=\left(\frac{330+\mathrm{v}}{330-\mathrm{v}}\right) 400 \\
& \Rightarrow \quad \mathrm{v}=\frac{330}{9}=36.67 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

17 In a magnesium rod of area $3 \mathrm{~m}^{2}$, current $\mathrm{I}=5 \mathrm{~A}$ is flowing at angle of $60^{\circ}$ from axis of rod. Resistivity of material is $44 \times 10^{-2} \mathrm{ohm} \times \mathrm{m}$. Find electric field inside the rod?

(1) 0.567
(2) 0.367
(3) 0.667
(4) 0.767

Ans. (2)
Sol. $J=\sigma E$
$\frac{1}{A_{\text {effective }}}=\frac{E}{\rho}$
$E=\frac{\rho I}{A} \cos 60^{\circ}=\frac{44 \times 10^{-2} \times 5}{3 \times 2} ; E=0.367$
18. Four moles of a diatomic gas is heated from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Find the heat supplied to the gas if work done by it is zero.
(1) 700 R
(2) 600 R
(3) 500 R
(4) 100 R

Ans. (3)
Sol. $\mathrm{n}=4$
$\Delta T=50 \mathrm{~K}$
$C_{v}=\frac{5 R}{2}$
As $\mathrm{W}=0$. It means isochoric process

$$
\begin{aligned}
Q & =\Delta U \\
& =n C_{v} \Delta T=4 \times \frac{5 R}{2} \times 50=500 R
\end{aligned}
$$

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Resonance
Educating for better tomorrow
19. A car is moving on a Banked rough road, the mass of car is 800 kg . The angle of Banking is $30^{\circ}$, car is moving with maximum speed given that $\mu_{\mathrm{s}}=0.2$. find the Normal Reaction (in Newton)?
(1) 24000
(2) 5000
(3) 10000
(4) 9000

Ans. (3)

## Sol.



Perpendicular to inclined plane
$N=m g \cos 30^{\circ}+\frac{m v^{2}}{R} \sin 30^{\circ}$
$N-m g \cos 30^{\circ}=\frac{m v^{2}}{R} \sin 30^{\circ}$
along inclined plane
$m g \sin 30^{\circ}+\mu_{\mathrm{s}} \mathrm{N}=\frac{\mathrm{mv}}{\mathrm{R}} \cos 30^{\circ}$
Dividing (1) by (2)
$\frac{\mathrm{N}-\mathrm{mg} \cos 30^{\circ}}{\mathrm{mg} \sin 30^{\circ}+\mu_{\mathrm{s}} \mathrm{N}}=\tan 30^{\circ}$
Solving $N=10000$ (Approx)
20. A particle of mass $m$ moving with speed $v$ collide elastically with the end of a uniform rod of mass $M$ and length $L$ perpendicularly as shown in figure. If the particle comes to rest after collision find the value of $\frac{\mathrm{m}}{\mathrm{M}}$.

(1) $1 / 3$
(2) $1 / 2$
(3) $1 / 4$
(4) $1 / 5$

Ans. (3)

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
Toll Free : 180025855557340010333 ffacebook.com/Resonanceedu $\square$ twitter.com/Resonanceedu 目www.youtube.com/resowatch Eblog.resonance.ac.in

Sol.

Rest

m
after collision
$1=\frac{v_{1}+\omega \frac{L}{2}}{v}$
Putting $\mathrm{v}_{1}$ from (ii) and $\omega \mathrm{L}$ from (i) in (iii)
$v=\frac{m}{M} v+\frac{6 m v}{2 M}$
$1=\frac{4 m}{M} ; m / M=1 / 4$
21. An object is moved from earth to moon. Choose the correct weight vs distance curve. Gravitational
acceleration on earth surface is $10 \mathrm{~m} / \mathrm{s}^{2}$ and that on moon is $4 \mathrm{~m} / \mathrm{s}^{2}$. Mass of the object is 1 kg .
21. An object is moved from earth to moon. Choose the correct weight vs distance curve. Graver
acceleration on earth surface is $10 \mathrm{~m} / \mathrm{s}^{2}$ and that on moon is $4 \mathrm{~m} / \mathrm{s}^{2}$. Mass of the object is 1 kg .

Ans. (2)
Conservation of angular momentum about centre of mass of rod
$\operatorname{mv}\left(\frac{\mathrm{L}}{2}\right)=\frac{\mathrm{ML}^{2}}{12}(\omega)$
-
$\mathrm{mv}=\mathrm{Mv}_{1}$

(1)

(3)

(4)



## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol. $\quad \vec{g}$ (at any point) $=\vec{g}_{\text {Earth }}+\vec{g}_{\text {moon }}$. Since distance is large so $|\vec{g}|=\left|\vec{g}_{E}\right|=10$.
As we move away from earth, It decrease to zero at a point where $\vec{g}_{E}+\vec{g}_{M}=0$
Then it increase to $|\overrightarrow{\mathrm{g}}|=\left|\overrightarrow{\mathrm{g}}_{\mathrm{M}}\right|=4$ at moon surface.
22. For the spherical interface of radius of curvature $R=30 \mathrm{~cm}$ shown in figure. The two different media having refractive indices $n_{1}=1.4$ and $n_{2}=1.25$, an object is placed at 40 cm from the interface as shown in figure. Find position of image.

(1) 41.67
(2) 35.42
(3) 22.27
(4) 15.25

Ans. (1)
Sol. $\frac{n_{2}}{v}-\frac{n_{1}}{u}=\frac{n_{2}-n_{1}}{R}$
$\Rightarrow \quad \frac{1.25}{v}-\frac{1.4}{-40}=\frac{1.25-1.4}{(-30)}$
$\Rightarrow \quad \frac{1.25}{v}=0.005-0.035$
$\Rightarrow \quad \mathrm{v}=-41.67 \mathrm{~cm}$
23. A ball of charge to mass ratio $8 \mu \mathrm{C} / \mathrm{g}$ is placed at a distance of 10 cm from a wall. An electric field 100 $\mathrm{N} / \mathrm{m}$ is switched on in the direction of wall. Find time period of its oscillations? Assume all collisions elastic.

(1) 1 sec
(2) 2 sec
(3) 3 sec
(4) 4 sec .

Ans. (1)

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 facebook.com/ResonanceEdu $Y$ twitter.com/ResonanceEdu witu ww.youtube.com/resowatch $Q$ blog.resonance.ac.in

Sol. $\quad a=\frac{q E}{m}=\frac{8 \times 10^{-6}}{10^{-3}} \times 100=0.8 \mathrm{~m} / \mathrm{s}^{2}$
As electric field is switched on, ball first strikes to wall and returns back. one oscillation.

Thus $s=u t+\frac{1}{2} a t_{1}^{2}$
$0.1=\frac{1}{2} \times 0.8 \mathrm{t}_{1}^{2}$
$t_{1}=\frac{1}{2} s$
Thus time period $T=2 \times \frac{1}{2}=1 \mathrm{sec}$.
24. A body of mass $m$ emits a photon of frequency $v$, then loss in its internal energy ?
(1) $h \nu$
(2) $h v\left(1-\frac{h v}{2 m c^{2}}\right)$
(3) $h v\left(1+\frac{h v}{2 m c^{2}}\right)$
(4) zero

Ans. (3)
Sol.


$m v=\frac{h}{\lambda}=\left(\frac{h v}{c}\right)$
Loss of energy $=\frac{1}{2} m v^{2}+h v$
$=\frac{1}{2} \frac{p^{2}}{m}+h v$
$=\frac{1}{2 m}\left(\frac{h v}{c}\right)^{2}+h v$
$=h v\left(1+\frac{h v}{2 m c^{2}}\right)$

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
25. Consider an equation $S=\alpha^{2} \beta \ell n\left(\frac{n k R}{J \beta^{2}}-1\right)$

Where $\mathrm{S}=$ Entropy
$\mathrm{n}=$ No. of moles
$\mathrm{k}=$ Boltzmann constant
R = Universal gas constant
$J=$ Mechanical equivalent of heat
Find dimension of $\alpha$ and $\beta$ respectively :
(1) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right],\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{2} \mathrm{~K}^{-1}\right]$
(2) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right],\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$
(3) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right],\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
(4) None of these

Ans. (1)
Sol. $\quad S=\frac{Q}{\Delta T}$
$[\mathrm{S}]=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~K}}$
$K=\frac{\text { Energy }}{T}$
$[\mathrm{K}]=[\mathrm{S}]=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~K}}$
$[\mathrm{R}]=\left[\frac{\text { Energy }}{\mathrm{nT}}\right]=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{molK}}$
$[\mathrm{J}]=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
Now, $[\mathrm{nKR}]=\left[\mathrm{J} \beta^{2}\right]$
$(\mathrm{mol}) \times \frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~K}} \times \frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~mol} \mathrm{~K}}=\left[\beta^{2}\right]$
$[\beta]=\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}$
$\left[\alpha^{2}\right]=\left[\frac{S}{\beta}\right]=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~K} \times \mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}} ; \quad \alpha=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
26. The shape of travelling wave at $t=0$, is given by $y=\frac{1}{1+x^{2}}$. If after 3 sec shape of the wave pulse is represented by $y=\frac{1}{1+(1-x)^{2}}$, then speed of wave is :
(1) $\frac{1}{2} \mathrm{~m} / \mathrm{s}$
(2) $\frac{4}{3} \mathrm{~m} / \mathrm{s}$
(3) $\frac{1}{3} \mathrm{~m} / \mathrm{s}$
(4) $\frac{5}{6} \mathrm{~m} / \mathrm{s}$

Ans. (3)
Sol. $\quad \mathrm{x} \rightarrow(\mathrm{x}-\mathrm{vt})$
$y=\frac{1}{1+(x-v t)^{2}}$
At $t=0 ; y=\frac{1}{1+x^{2}}$
at $\mathrm{t}=3 ; \mathrm{y}=\frac{1}{1+(x-3 \mathrm{v})^{2}}$
By comparing
$V=\frac{1}{3} \mathrm{~m} / \mathrm{s}$

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
27. In hydrogen atom these is photon emitted by transition of electron from $n=3$ to $n=1$, this photon is then incident on a gold plate from which electron is emitted which will make a radius of 7 mm in a uniform magnetic field of intensity $5 \times 10^{-4} \mathrm{~T}$ find the work function of gold plate?
(1) 3.4 eV
(2) 5.12 eV
(3) 1.031 eV
(4) 11.01 eV

Ans. (4)
Sol. $E p=13.6\left[\frac{1}{R_{1}^{2}}-\frac{1}{R_{2}^{2}}\right] \mathrm{eV}$
$=13.6\left[\frac{1}{1}-\frac{1}{9}\right]$
$\mathrm{Ep}=12.08 \mathrm{eV}$
For Gold plate
$\phi=\mathrm{Ep}-\mathrm{KEmax}$
$v=\frac{R q B}{m}$
$=\frac{7 \times 10^{-3} \times 1.6 \times 10^{-19} \times 5 \times 10^{-4}}{9.1 \times 10^{-31}}=6.15 \times 10^{5}$
K.E. $=\frac{1}{2} m V^{2}$
$K . E=\frac{1}{2} \times \frac{9.1 \times 10^{-31} \times\left(6.15 \times 10^{5}\right)^{2}}{1.6 \times 10^{-19}} \mathrm{eV}=1.075 \mathrm{eV}$
$\phi=12.05-1.075$
$\phi=11.01 \mathrm{eV}$

## Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
= HIGHEST No. of ClassroomSelections $\overline{=}$ in JEE (Advanced) 2020 from any Institute of Kota

## 5 AIRs in TOP-50 in JEE (Adv.) 2020 from Classroom





Classroom: 1833 | Distance: $\mathbf{8 1 3}$

## ADMISSION OPEN for Session 2021-22

ONLINE + OFFLINE PROGRAMS

## CLASS 11, 12 \& 12+

Target: JEE (Main+Adv.) | JEE (Main) | NEET

## Scholarship Upto 90\%*

