

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

bl. $X_A + X_B = 1 \begin{cases} X_A = 0.6 \\ X_B = 0.4 \end{cases}$ $P_{Total} = P_A^O X_A + P_B^O X_B$ = [90] 0.6 + [15] 0.4 = 54 + 6 = 60 torr $P_B = P_B^O X_B = [P_{TOTAL}] Y_B$ $x_B = 15 \times 0.4$

6. What is the difference in number of unpaired electron when NiCl₂ change into [Ni(CN)₆]²⁻
 Ans. (2)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

🔨 Resonance[®] | JEE MAIN-2021 | DATE : 20-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED | CHEMISTRY

Cal			▲ Respirence						
Sol.		$^{2+}$ \Rightarrow $3d^{8}$ \Rightarrow $\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow	anne' Rea						
	Un <mark>pai</mark> red e	lectron n = 2							
	[Ni(CN)6] ²⁻	$\Rightarrow Ni^{4+} \Rightarrow 3d^6 \Rightarrow t_{2g^{2,2,2}}$,eg ^{0,0}							
	u <mark>npai</mark> red e	electron = 0							
	difference i	n unpaired electron = 2							
7.		e major use of dihydrogen (H ₂)							
		ation of HNO_3							
		esis of ammonia (NH ₃) cell for generating electrical en							
		ice heavy metal oxides to meta							
Ans.	(2)								
Sol.		t single of dihydrogen in the sy	nthesis of ammonia [N0	CERT page 287]					
8.	Cu ²⁺ salt or	n reaction with KI forms							
	(1) Cul	(2) Cu ₂ I ₃	(3) Cu(I ₃) ₂	(4) Does	s not react				
Ans.	(1)								
Sol.	2C <mark>u²⁺ +</mark> 4K	$I \longrightarrow 2Cul_{(S)} + I_2 + 4K^+$							
125			t.						
9.	which of th	e following species does not h	lave magnetic moment						
	(1) O ₂	(2) O ₂ ⊕	(3) Cul	(4) [Cu(NH ₃) ₄]Cl ₂				
Ans.	(3)								
Sol.	μ <mark>= 1.</mark> 73 ΒΙ	It means number of unpaired	l electron= 1						
	Species	Unpaired electron							
	02	1							
	0 [⊕] ₂	1							
	∠ Cu⁺	0							
	Cu ²⁺								
		Contraction of the							

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

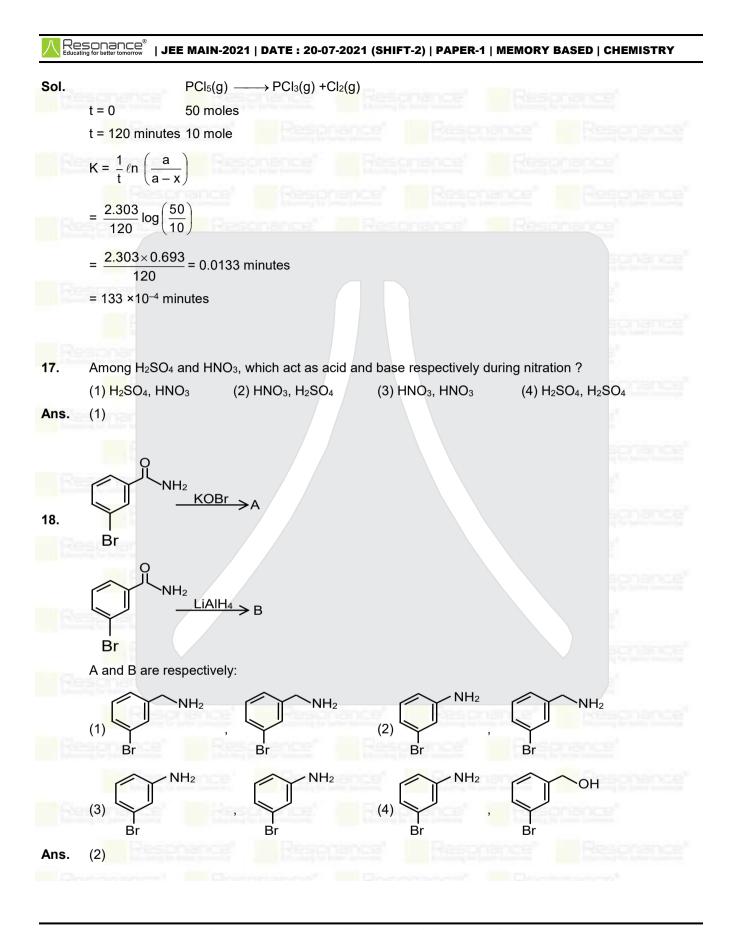
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

10.	(i) CaCO ₃ \longrightarrow CaO _(s) + CO _{2(g)}											
	(ii) ZnS $\xrightarrow{\Delta}$ ZnO + SO ₂											
	Identify the calcination and roasting reaction from above											
	(1) Both reaction are roasting											
	(2) Both reaction are calcination											
	(3) 1 st reaction is calcination and 2 nd reaction is roasting											
	(4) 1 st reaction	n is roastir	ng and	2 nd reac	tion is c	alcinatio	n.					
Ans.	(3)											
Sol.	(i) Calcination \Rightarrow CaCO _{3(S)} $\xrightarrow{\Delta}$ CaO _(S) + CO _{2(g)}											
	(ii) Roasting \Rightarrow ZnS $\xrightarrow{\Delta}$ ZnO _(S) + SO _{2(g)}											
		- 2 110	02									
1.	Fo <mark>r a re</mark> actior	n ∆G° =– 5	51.4 KJ/	/mol and	d ∆H° = ·	49. 4 KJ/	mol at 30	0K, then v	value o	f ∆S⁰ in	J/K is	
Ans	(336)											
Sol.	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$											
	$-51.4 = 49.4 - T \Delta S^{\circ}$											
	– <mark>51.4</mark> = 49.4	– T ∆S°										
		_										
	$-51.4 = 49.4$ $\Delta S^{\circ} = \left[\frac{49.4}{30}\right]$	_										
	$\Delta S^{\circ} = \left[\frac{49.4}{30}\right]$	_	6J/K									
	$\Delta S^{\circ} = \left[\frac{49.4}{30}\right]$	+ 51.4 00	6J/K									
	$\Delta S^{\circ} = \left[\frac{49.4}{30}\right]$	<u>+ 51.4</u> 00] KJ/K = 330		ent with	electror	nic confiç	guration 4	s²4p¹ if	we mo	ve diaç	jonally 1	then 1
	$\Delta S^{\circ} = \left[\frac{49.4}{300}\right]$ $= 0.336$	+ 51.4)0 KJ/K = 330 from the	eleme				guration 4	s²4p¹ if	we mo	ve diaç	jonally 1	then
	$\Delta S^{\circ} = \left[\frac{49.4}{300}\right]$ $= 0.336$ In 13 th group	+ 51.4)0 KJ/K = 330 from the	eleme	eriod el			-		we mo (4) 5s ²		gonally 1	then
12.	$\Delta S^{\circ} = \left[\frac{49.4}{300}\right]$ $= 0.336$ In 13 th group electronic cor	+ 51.4)0 KJ/K = 330 from the	eleme of 5 th p	eriod el		5:	-				jonally 1	then -
I2. Ans	$\Delta S^{\circ} = \left[\frac{49.4}{300}\right]$ $= 0.336$ In 13 th group electronic corr (1) 5s ² 5p ³	+ 51.4)0 KJ/K = 330 from the	eleme of 5 th p	eriod el		5:	-				jonally 1	then
I2. Ans	$\Delta S^{\circ} = \left[\frac{49.4}{300}\right]$ $= 0.336$ In 13 th group electronic corr (1) 5s ² 5p ³	+ 51.4)0 KJ/K = 330 from the	eleme of 5 th p (2) 4s ² 13 th	period el ² 4p ¹	ement is	5:	-				jonally 1	then
I2. Ans	$\Delta S^{\circ} = \left[\frac{49.4}{300}\right]$ $= 0.336$ In 13 th group electronic cor (1) 5s ² 5p ³ (4)	+ 51.4 00 KJ/K = 330 from the	eleme of 5 th p (2) 4s ² 13 th B	period el ² 4p ¹ 14 th	ement is 15 th	5:	-				jonally 1	then
I2. Ans Sol.	$\Delta S^{\circ} = \left[\frac{49.4}{300}\right]$ $= 0.336$ In 13 th group electronic cor (1) 5s ² 5p ³ (4) 2 nd period	$\frac{+51.4}{00}$ KJ/K = 330 from the ofiguration $2s^22p^1$	eleme of 5 th p (2) 4s ² 13 th B A <i>l</i>	period el ² 4p ¹ 14 th C	ement is 15 th N	5:	-				gonally 1	then
l 2. Ans	$\Delta S^{\circ} = \left[\frac{49.4}{300}\right]$ $= 0.336$ In 13 th group electronic corr (1) 5s ² 5p ³ (4) 2 nd period 3 rd period	$\frac{+51.4}{00}$ KJ/K = 330 from the ofiguration $2s^{2}2p^{1}$ $3s^{2}3p^{1}$	eleme of 5 th p (2) 4s ² 13 th B A <i>l</i> Ga	eriod el ² 4p ¹ 14 th C Si	ement is 15 th N P	5:	-				jonally 1	then

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

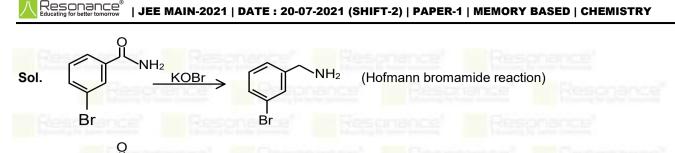
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu vww.youtube.com/resowatch c blog.resonance.ac.in

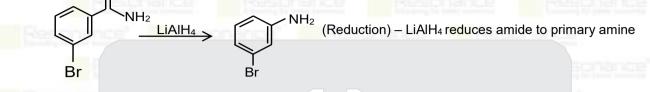
13. Identify the correct hybridisation of $NO_{\overline{2}}^{\oplus}, NO_{2}^{\oplus}, NH_{4}^{\oplus}$ (2) sp, sp², sp³ (1) sp², sp, sp³ (4) sp², sp³, sp (3) sp³, sp², sp Ans (1) sp² Sol. NO2 ⊕ O = N =O NO[⊕] sp NH[⊕]₄ sp³ 14. Which of the following statement is incorrect about Enzymes (1) Enzymes are non-specific (2) Enzymes are temperature and pH specific (3) Almost all enzymes are proteins (4) Enzymes act as catalyst. Ans. (1) Sol. Enzymes are highely specific in nature A metal crystallize in FCC lattice in addition to 50% occupancy of tetrahedral voids, find the effective 15. number of atoms of metal per unit cell. (8) Ans Sol. Metal crystalize in fcc unit cell Effective No. of Atoms = 4 [FCC] + 8 [TV]1/2 Ans = 816. PCl_5 decompose according to 1st order reaction as $PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$. Initially we take 50 moles of PCI5 and after 120 minutes final moles of PCI5 is 10 then the value of rate constant of reaction is [x] X 10⁻⁴ minutes, then value of 'x' is: (133)Ans


| JEE MAIN-2021 | DATE : 20-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED | CHEMISTRY

Resonance[®]

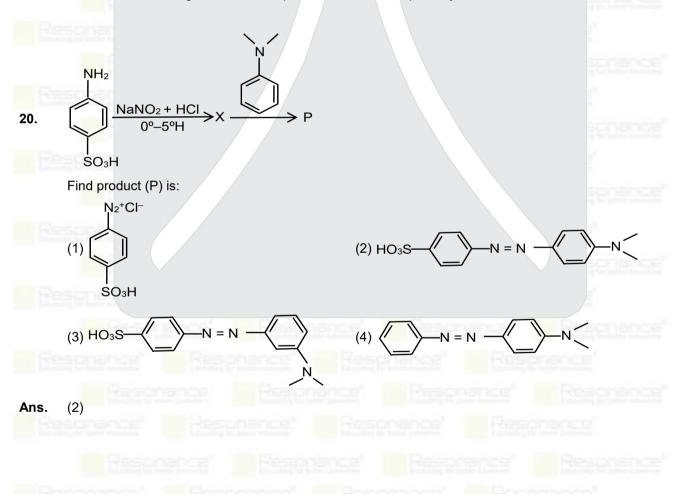
Resonance Eduventures Ltd.


Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222


To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

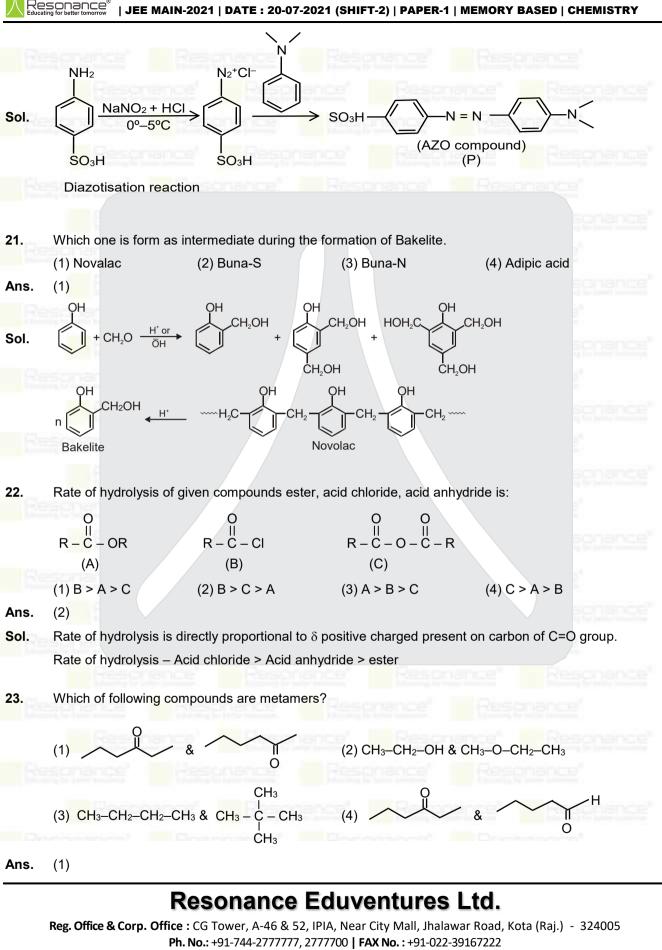
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

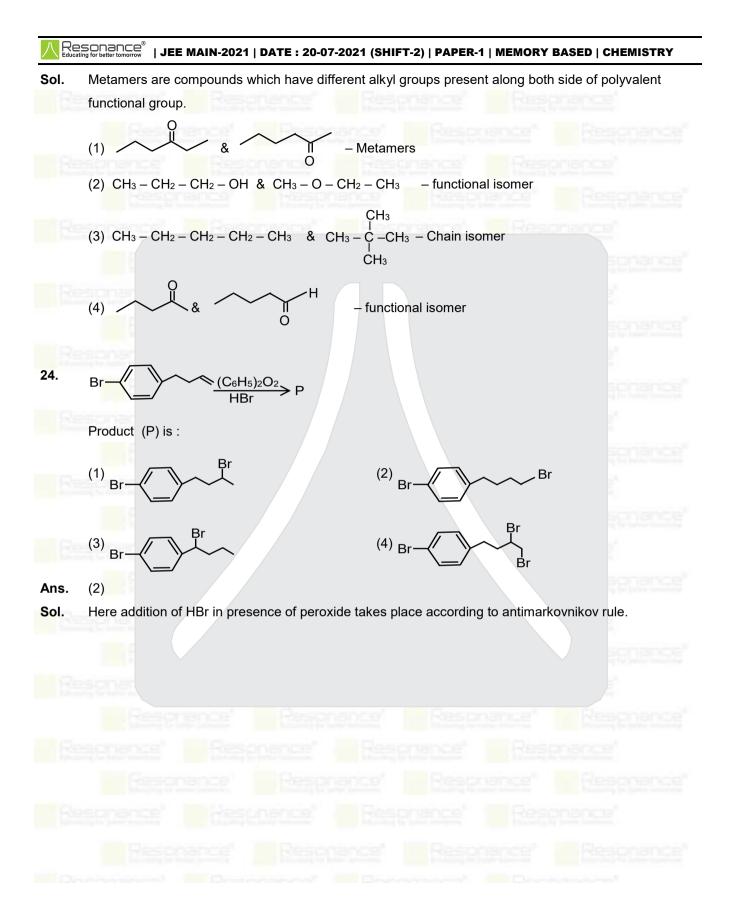


 19.
 Which gas retards photosynthesis?

 (1) CO
 (2) CFC
 (3) CO2
 (4) NO2

 Ans.
 (4)


Sol. Reason: NO₂ damage the leaves of plants and retard the photosynthesis.


Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch blg.resonance.ac.in