

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blg.resonance.ac.in

Resonance" | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

8. Re	Efficiency of heat e	ngine is $\eta = 1/6$. If tem	perature of sink is dec	reas <mark>ed</mark> by 62K, ther	n efficiency become		
	1/3. Find temperatu	re of source :					
	(1 <mark>) 372</mark> K	(2) <mark>272K</mark>	(3) 3 <mark>50K</mark>	(4) 45 <mark>0K</mark>			
Ans.							
Sol.	$\eta = \left(1 - \frac{T_2}{T_1}\right)$						
	$\frac{T_2}{T_1} = 1 - \eta = 1 - \frac{1}{6}$	(1)					
	$\frac{T_2 - 62}{T_1} = 1 - \frac{1}{3}$	(2)					
	Equation $\frac{(1)}{(2)}$:						
	$\Rightarrow \frac{T_2}{T_2 - 62} = \frac{5}{6}$	$\frac{5}{6} \times \frac{3}{2} = \frac{5}{4}$					
	\Rightarrow T ₂ = 5 × 62						
	Fr <mark>om e</mark> q. (1)						
	$T_1 = \frac{T_2}{1-\eta} = \frac{5 \times 62}{1-\frac{1}{6}} =$	$= 5 \times 62 \times \frac{6}{5} = 372 \text{K}$					
	e O						
	Activity of an element x becomes 1/8 of initial in 30 years. Find half-life						
5.	(1) 10 Year	(2) 12 Year	(3) 15 Year	(4) 17 Yea	, sonance*		
Ans.	(1)	(2) 12 1041			ing for better tomorrow		
Sol.	$A = A_0 e^{-\lambda t}$						
	Fo <mark>r ha</mark> lf life						
	$A/2 = A e^{-\lambda t_{1/2}}$						
	$\frac{1}{2} = e^{-\lambda t_{1/2}}$	(1)					
	Given $1/8 = e^{-\lambda 30}$	Resona(2)					
	Solving (1) and (2)						
	$e^{-3\lambda t_{1/2}} = e^{-\lambda 30}$						
	Resonan						

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance" | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

10. If De-Broglie wavelengths of photon and electron are equal, what will be the ratio of kinetic energy of electron and energy of photon? Given that velocity of electron is v and velocity of light is c :

11. A square loop of total resistance 16Ω . If a battery of 2V and 1Ω internal resistance is connected across one of its side then find potential difference across its diagonal :

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

	SONANCE [®] JEE MAIN	N-2021 DATE : 25-07-2	021 (SHIFT-2) PA	APER-1 MEMORY BA	SED PHYSICS					
12.	Ā and Ē are two veo	ctors such that $\left \vec{A}\right = 2a$	and $ \vec{B} = 5$. If $ \vec{A} \times$	$ \vec{B} = 8$, then $ \vec{A}.\vec{B} = ?$						
Δns		(2) <mark>6</mark>	(3) 7 R							
Sol.	$\left \vec{A} \times \vec{B} \right = \left \vec{A} \right \left \vec{B} \right \sin \theta$									
	\Rightarrow 10sin θ = 8									
	$\sin\theta = \frac{7}{5}$									
	Now $ \vec{A}.\vec{B} = \vec{A} \vec{B} \cos \theta$	$\theta = 10 \times \frac{3}{5} = 6$								
13.	Find significant figure	for the value 0.00346.								
Ans.	(1) 5 (3)	(2) 4	(3) 3	(4) 2						
Sol.	There are 3 non zero	digit after the decimal	point so significar	nt number is 3.						
14.	. For a prism, if angle of minimum deviation is equal to angle of prism. If refractive index of prism material is μ. Then angle of prism should be?									
	(1) $2\sin^{-1}\left(\frac{\mu}{2}\right)$	$(2) \ 2\cos^{-1}\left(\frac{\mu}{2}\right)$	(3) $3\cos^{-1}\left(\frac{1}{2}\right)$	$\left(\frac{\mu}{2}\right)$ (4) 3sin	$-1\left(\frac{\mu}{2}\right)$					
Ans.	(2)									
Sol	$\sin\left(\frac{A+\delta_{m}}{2}\right)$									
30 .	$\mu = -\frac{1}{\sin\left(\frac{A}{2}\right)}$									
	$\mu = \frac{\sin A}{\frac{\sin A}{2}}$									
	$\mu = 2\cos\frac{A}{A}$									
	$\begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$									
	$A = 2005 \left(\frac{1}{2}\right)$									

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu vww.youtube.com/resowatch C biog.resonance.ac.in

- 15. A photon of wavelength 500 nm falls on a metal surface of work function 1.3eV. An electron releases from metal moved in a perpendicular magnetic field. In a circular path of radius 30 cm. Then the magnitude of magnetic field will be ? (1) 12.2 µT (3) 8.2 µT (4) 6.2 μT (2) 10.2 µT Ans. (1) $\frac{hc}{\lambda} = \phi + KE_{max}$ Sol. $\frac{1240}{500}$ = 1.3 + KE_{max} KE_{max} = 1.18 eV Now R = $\frac{mv}{qB} = \frac{\sqrt{2mKE}}{qB}$ $B = \frac{\sqrt{2m KE}}{qR}$ $\mathsf{B} = \frac{\sqrt{2} \times 9.1 \times 10^{-31} \times 1.18 \times 1.6 \times 10^{-19}}{1.6 \times 10^{-19} \times 30 \times 10^{-2}}$ $B = 0.122 \times 10^{-4}$ $B = 12.2 \times 10^{-6}$ i.e<mark>., B = 12.2 μ</mark>T
- 16. Two electric dipole \vec{P}_1 and \vec{P}_2 are kept as shown in figure. Net electric field at point S is E makes an angle

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blg.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 7340010333 facebook.com/ResonanceEdu www.youtube.com/resowatch blg.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : <u>contact@resonance.ac.in</u> | <u>CIN : U80302RJ2007PLC024029</u> Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu www.youtube.com/resowatch

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blg.resonance.ac.in

Resonance" | JEE MAIN-2021 | DATE : 25-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in 🛛 🗗 💆 🚨 🕔