JENPAS(UG)-2021

Physics

The refractive index of the material of a prism is $\sqrt{\frac{3}{2}}$ and angle of prism is 90°. The angle of minimum deviation will be (1) 60°
(B) 120^{*}
(C) 15°
(D) 30° रण्किस्न चर
(A) 60°
(B) 120°
(C) 15°
(D) 30°

A lens of power +2 D is placed in contact with a lens of power -1 D . The combination will behave like
(A) a convex lens of focal length 0.5 m
(B) a concave lens of focal length 1.00 m
(C) a convex lens of focal length 1.00 m
(D) a convex lens of focal length 2.00 m

(A) 0.5 m एसाकाम लिर्ष्धाब बकढि उख्न पनस्म
(B) 1.00 m एसकाम लिए्याँद्र बवणि अवडन नেम्न
(C) 1.00 m सिाकाग लिर्ब्यार्र बकढि 亏बनन लनम्भ

The refractive indices of glass and quartz with respect to air are $\frac{3}{2}$ and $\frac{12}{5}$ respectively. The refractive index of quartz with respect to glass is
(A) $\frac{5}{8}$
(B) $\frac{5}{18}$
(c) $\frac{8}{5}$
(D) $\frac{18}{5}$
 प्रजिमदा इन,
(A) $\frac{5}{8}$
(B) $\frac{5}{18}$
(C) $\frac{8}{5}$
(D) $\frac{18}{5}$

JENPAS(UG)-2021

4. An astronomical telescope has-magnifying power 24 when used in normal vision. The length of the telescope is 1.00 m . The focal length of the objective lens is
(A) 0.04 m
(B) 0.96 m
(C) 1.00 m
(D) 0.24 m

(A) 0.04 m
(B) 0.96 m
(C) 1.00 m
(D) 0.24 m
5. The equivalent decimal number of the binary number 11.01 is
(A) 32.5
(B) 3.25
(C) 0.325
(D) 325.0
11.01 रीनति गः थाजिए कृना नथसिक मशथाणि इ'न
(A) 32.5
(B) $\quad 3,25$
(C) 0.325
(D) 325.0
6. The relation between refractive indices n_{1} and n_{2} if the behaviour of the light rays is as shown in the figure is

(A) $n_{1}>n_{2}$
(d) $n_{2}>n_{1}$
(C) $n_{1} \gg n_{2}$
(D) $\mathrm{n}_{1}=\mathrm{n}_{2}$
 शढ

(A) $\mathrm{n}_{1}>\mathrm{n}_{2}$
(B) $\mathrm{n}_{2}>\mathrm{n}_{1}$
(C) $n_{1} \gg n_{2}$
(D) $\mathrm{n}_{1}=\mathrm{n}_{2}$

7. For determinine JENPAS(UG)-2021

 of radius. The percentage error in volume an error of 5% is committed in the measurenent (A) 15%(B) 40%
(C) 2006
(D) 10% नखद्या दृध साकर च्वाष
(1) 15%
(B) 40%
(C) 20\%
(D) 10%
8. The velocity v of a particle is $v=v_{0}+g t+a t^{2}$ where $v_{0} . g$ and a are constants and t is time. If its position is $x=0$ at $t=0$, then its displacement after unit time (i.e. $t=1$) is
(A) $\mathrm{v}_{0}+\frac{g}{2}+\mathrm{a}$
(B) $\mathrm{v}_{0}+\frac{\mathrm{g}}{2}+\frac{\mathrm{a}}{3}$
(C) $v_{0}+g+a$
(D) $\mathrm{v}_{0}+2 \mathrm{~g}+3 \mathrm{a}$

(A) $v_{0}+\frac{g}{2}+a$
s) $v_{0}+\frac{g}{2}+\frac{a}{3}$
(C) $\mathrm{v}_{0}+\mathrm{g}+\mathrm{a}$
(D) $\mathrm{v}_{0}+2 \mathrm{~g}+3 \mathrm{a}$
9. A man of 60 kg is standing on spring balance inside a lift. If the lift falls freely downward the reading of the spring balance will be
(A) 60 kg
(B) $<60 \mathrm{~kg}$
(C) zero
(D) $>60 \mathrm{~kg}$

(A) 60 kg
(B) $<60 \mathrm{~kg}$
(C) zero
(D) $>60 \mathrm{~kg}$
10. $(60 \hat{i}+15 \hat{j}-3 \hat{k}) \mathrm{N}$ force produces velocity $(2 \hat{i}-4 \hat{j}+5 \hat{k}) \mathrm{m} / \mathrm{s}$ in a particle. The power at that
time will be
(A) 100 W
(B) 75 W
(C) 95 W
(D) 45 W
 लभित्र जई ममटरा श्रयूक क्जा शख़
(A) 100 W
(B) 75 W
(C) 95 W
(D) 45 W

JENPAS(UG)-2021

11. Two particles have masses M and 4 M and their kinetic energies are in the ratio 2:1. The ratio of their linear momenta is
(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{1}{4}$
(D) 2

(A) $\frac{1}{2}$
(i) $\frac{1}{\sqrt{2}}$
(C) $\frac{1}{4}$
(D) 2
12. Two satellites of mass m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are going around the earth in orbits of radii R_{1} and R_{2} respectively $\left(R_{1}>R_{2}\right)$. Which statement about their velocities (v_{1} and v_{2} respectively) is correct ?
(A) $v_{1}=v_{2}$
(B) $\quad \mathrm{v}_{1}>\mathrm{v}_{2}$
(C) $\frac{v_{1}}{R_{1}}=\frac{v_{2}}{R_{2}}$
(r) $v_{1}<v_{2}$

(A) $v_{1}=v_{2}$
(B) $\quad \mathrm{v}_{1}>\mathrm{v}_{2}$
(C) $\frac{v_{1}}{R_{1}}=\frac{v_{2}}{R_{2}}$
(D) $\mathrm{v}_{1}<\mathrm{v}_{2}$
13. If α, β and γ are the coefficients of linear, surface and volume expansion of a solid, then
(A) $\alpha: \beta: \gamma=3: 2: 1$
(B) $\alpha: \beta: \gamma=2: 3: 1$
(C) $\alpha: \beta: \gamma=1: 2: 3$
(D) $\alpha: \beta: \gamma=3: 1: 2$

(A) $\alpha: \beta: \gamma=3: 2: 1$
(B) $\alpha: \beta: \gamma=2: 3: 1$
(C) $\alpha: \beta: \gamma=1: 2: 3$
(D) $\alpha: \beta: \gamma=3: 1: 2$
14. The number of degrees of freedom for molecules of an ideal monatomic gas is
(A) 4
(B) 5
(C) 3
(D) 6

(A) 4
(B) 5
(C) 3
(D) 6

JENPAS(UG)-2021

1. Neutectingicle of mass m and charge q is released from reat in a uniform electric field second is
(A) $\frac{\mathrm{E}^{3} q^{2} \mathrm{t}^{3}}{2 \mathrm{~m}}$
(B) $\frac{E q^{2} m}{2 t^{2}}$
(C) $\frac{\mathrm{Eqm}}{\mathrm{t}}$
(D) $\frac{E^{2} t^{2}}{2 q^{1} m}$

(v) $\frac{E^{2} q^{2} t^{2}}{2 m}$
(B) $\frac{E q^{2} \mathrm{~m}}{2 \mathrm{t}^{2}}$
(C) $\frac{\mathrm{Eqm}}{\mathrm{t}}$
(D) $\frac{E^{3} t^{2}}{2 q^{2} m}$
2. A potential difference V is applied between the terminals of a series combination of two capacitors of capacitances C_{1} and C_{2}. If V_{1} and V_{2} are the potential differences across C_{1} and C_{2} respectively, then $\frac{V_{1}}{V_{2}}$ equals to
(A) $\frac{C_{1}}{C_{2}}$
(B) $\frac{C_{2}}{C_{1}}$
(C) $\mathrm{C}_{1} \mathrm{C}_{2}$
(D) $\mathrm{C}_{1}+\mathrm{C}_{2}$

(A) $\frac{C_{1}}{C_{2}}$
(B) $\frac{C_{2}}{C_{1}}$
(C) $\mathrm{C}_{1} \mathrm{C}_{2}$
(D) $\mathrm{C}_{1}+\mathrm{C}_{2}$

Two spheres A and B have equal mass. Those are given equal amounts of positive and negative charges respectively, then
(A) Mass of A will become greater than B.
(B) Both will have equal mass.
(C) Mass of A will become lesser than B. (D) Nothing can be concluded certainly.
 आधाल अशिड कदा इन। ाशन
(A) A -बत उत B -बता कालत रणाक खुगो शतन
(B) मुजिति ज़ बक ₹ बाकऱ
(C) A -था 5 त B -बद्ध जल़ा एलक कम इटव
(D) टालना अठिक निर्वया कत्रा अषुब नरा

JENPAS(UG)-2021

18. $3=10^{200}$ electrons flow through a croms-section of a metallic wire in 16 sec . The electric current in the wire is [given, charge of an electron $=1.6 \times 10^{-19} \mathrm{C}$]
(A) 16 A
(B) 48 A
(5) 3 A
(D) 5.1 A

(A) 16 A
(B) 48 A
(C) 3 A
(D) 5.1 A
19. A uniform cylindrical wire of resistance R is uniformly compressed along its length until its radius becomes n times the original radius without any change of shape and density of the wire. Now, the resistance of the wire becomes
(A) $\frac{R}{n^{2}}$
(B) $\frac{R}{n}$
(C) $n \mathrm{n}$
(0) $\frac{R}{n^{4}}$

 जहजित्र अधिय र्बाप शवन
(A) $\frac{R}{n^{2}}$
(B) $\frac{R}{n}$
(C) $n \mathrm{n}$
(D) $\frac{\mathrm{R}}{\mathrm{n}^{4}}$
20. The potential difference across a conductor having a material of resistivity ρ is assumed to remain constant. Then the heat produced in the conductor, according to Joule's law is directly proportional to
(A) p
(B) $\frac{1}{\mathrm{p}^{2}}$
(C) $\frac{1}{\rho}$
(D) $\frac{1}{\sqrt{\rho}}$

(A) ρ
(B) $\frac{1}{\rho^{2}}$
(C) $\frac{1}{\rho}$
(D) $\frac{1}{\sqrt{\rho}}$
21. The magnetic field due to magnetic dipole of moment M at a point on the axis of the dipole and at a distance d from its centre is
(A) $\frac{\mu_{0}}{4 \pi} \frac{2 M}{d^{2}}$
(B) $\frac{\mu_{0}}{4 \pi} \frac{2 M}{d^{3}}$
(C) $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{\mathrm{d}^{3}}$
(D) $\frac{\mu_{0}}{4 \pi} \frac{M}{d^{2}}$
 मान शत्व
(A) $\frac{\mu_{e}}{4 \pi} \frac{2 M}{d^{2}}$
(F) $\frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{M}}{d^{3}}$
(C) $\frac{\mu_{0}}{4 \pi} \frac{M}{d^{3}}$
(D) $\frac{\mu_{0}}{4 \pi} \frac{M}{d^{2}}$

JENPAS(UG)-2021

22. Which relation does not hold good in a series 1 - C-R eirouit at frsonance?
(A) $\omega=\frac{1}{\sqrt{L C}}$
(B) $\mathrm{L} a=\frac{1}{\mathrm{C}}$
(C) $\mathrm{C}=\frac{1}{\mathrm{Le}}$
(D) $s=\frac{1}{L C}$

(9) $0=\frac{1}{\sqrt{\text { L.C }}}$
(B) $\mathrm{L} \cdot \theta=\frac{\mathrm{I}}{\mathrm{C}_{\theta}}$
(C) $\mathrm{C} 日=\frac{1}{\mathrm{~L} 日}$
(D) $\quad \mathrm{E}=\frac{1}{\mathrm{LC}}$
23. To get three images of a single object, one should have two plane mirrors at an angle of
(A) 120°
(B) 90°
(C) 30°
(D) 60^{*}

(A) 120°
(6) 90°
(C) 30°
(D) 60°
24. A concave mirror has a focal length of 0.15 m . What is its radius of curvature ?
(G) 0.30 m
(B) 0.15 m
(C) 0.075 m
(D) 0.10 m

(A) 0.30 m
(B) 0.15 m
(C) 0.075 m
(D) 0.10 m
25. Light travels through a glass plate of thickness ' t ' and refractive index ' n '. If ' c ' be the velocity of light in vacuum, the minimum time taken by light ray to travel the thickness
of glass is
(A) the
(3) $\frac{\mathrm{nt}}{\mathrm{c}}$
(C) $\frac{\mathrm{t}}{\mathrm{nc}}$
(D) $\frac{\mathrm{ct}}{\mathrm{n}}$

 नागती ?
(A) the
(B) $\frac{\mathrm{nt}}{\mathrm{c}}$
(C) $\frac{\mathrm{t}}{\mathrm{nc}}$
(D) $\frac{\mathrm{ct}}{\mathrm{n}}$

CHEMISTRY

26. The antoy bus directing group amone the following is

(A) $-\mathrm{COCH}_{3}$
(C) -CN
(B) $\mathrm{CO}_{2} \mathrm{H}$
(5) NHCOCH_{3}
27. The product ' P ' in the reaction $\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{PCl}_{3} \rightarrow$ ' P ' is

(A) $\mathrm{CH}_{3} \mathrm{COCl}$
(C) $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{NH}_{2}$
(B) $\mathrm{CH}_{3} \mathrm{CN}$
(D) $\mathrm{CH}_{2} \mathrm{CICONH}_{2}$
28. Zwitter ionic form of glycine exists at
(A) isoelectric point
(B) $\mathrm{pH}=0$
(1) $\mathrm{pH}=7$
(D) $\mathrm{pH}=14$

णिड खारन चृमिकाश शारणिन अदश्शन कर्ड
(A) अมखाड़ित विभ्भृत्र
(C) $\mathrm{pH}=7$
(B) $\mathrm{pH}=0$
(D) $\mathrm{pH}=14$
29. Heating a mixture of compound ' X ' and methanol in presence of catalytic $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave smell of winter green. The compound ' X ' is
(A) succinic acid
(B) benzoic acid
(5) salicylic acid
(D) cinnamic acid गक लीजरा याख। युौभढि इ'न
(A) मारभिनिक्ड खाभिड
(B) पबत्घणिक खाभिड
(C) मानिभाइनिक खामिड
(D) সिनाभिक आभिड

JENPAS(UG)-2021

30. In an isothermal expansion of an ideal gas, which one of the following is correct?

(1) $\Delta \mathrm{U}=0$
(B) $\mathrm{AH}>0$
(C) $\Delta s>0$
(D) $\Delta \mathrm{S}<0$
31. What volume ratio of 2 M and 6 M solutions of HCl is to be mixed to prepare a 3 M HCl solution ? Ignore the change in volume due to mixing.
 स्विलत भतन अारडन परिदर्ठन स्याश क्ड।
(A) $1: 2$
(1) $1: 3$
(C) $3: 1$
(D) $2: 1$
32. Number of moles of $\mathrm{H}_{2} \mathrm{O}$ formed when 25 ml of 0.1 M HNO , solution is completely neutralised by NaOH is
 इए
(A) 2.5×10^{-4}
(B) 2.5×10^{-3}
(C) 2.5×10^{-2}
(D) 2.5×10^{-1}
33. In the reaction, $2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+21^{-}$, the equivalent weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (molecular weight $=\mathrm{M}$) is equal to

C) M
(B) $\frac{\mathrm{M}}{2}$
(C) 2 M
(D) $\frac{M}{6}$
34. Which of the following is true for a first order reaction, on doubling the concentration of the reactant ?
(A) Rate constant is doubled.
(B) Half-life is halved.
(C) Activation energy is lowered.
(D) Rate of the reaction is doubled.

(B) उर्षागय अल्थंक श्यद
(C) সक्तिताकत्रण *क्जि क्य शब
(D) बिक्षिश्या-साब चिचल शत्य

15. Oxidation stater of 'S

गयणिड़िद्ध wrfuy tel in sulphuric acid and peroxomonomulphuric acid respectively are $\begin{array}{ll}\text { (A) VI and IV } & \text { (i) } \\ & \text { (II } \\ \end{array}$
(B) VI and V
(C) VI and VI
(D) IV and VI
36. An ammoniacal solution of a cation gives chocolate brown procipitate on adding

(B) Fe (III)
(C) Fe(II)
(D) Cu (I)
37. At 298 K , the E^{*} value for the cell reaction $\mathrm{Fe}_{(3)}+\mathrm{Cu}_{(0 y)}^{2+} \rightleftharpoons \mathrm{Fe}_{(a y)}^{2+}+\mathrm{Cu}_{(0)}$ is 0.75 V . If the standard oxidation potential of $\mathrm{Cu} / \mathrm{Cu}^{2+}$ electrode is -0.34 V , then the standard reduction potential of $\mathrm{Fe}^{2+} / \mathrm{Fe}$ electrode will be

 () 0.41 V
(B) 1.09 V
(C) -0.41 V
(D) -1.09 V
38. At a certain temperature, the solubility product values of MX, MX and $\mathrm{M}_{3} \mathrm{X}$ salts are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and 2.7×10^{-15} respectively. The correct order of solubility (in $\mathrm{mol} / \mathrm{dm}^{3}$) of the salts at the same temperature will be

(A) $\mathrm{MX}>\mathrm{MX}_{2}>\mathrm{M}_{3} \mathrm{X}$
(C) $\mathrm{MX}_{2}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}$
(B) $\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}>\mathrm{MX}$
(1) $\mathrm{MX}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}$
39. Which of the following aqueous solutions boils at the lowest temperature ?

(A) 0.01 m glucose
(C) $0.01 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(B) 0.01 m NaCl
(D) $0.01 \mathrm{~m} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
40. Which of the following contains the highest number of atoms ?

(A) $\mathrm{lgCu}_{(0)}$
(B) $\lg \mathrm{Ag}_{(1)}$
(c)
$\lg A u_{\text {(0) }}$
(D) $\lg Z u_{\text {(1) }}$

JENPAS(UG)-2021

41. Which of the following wet of quantum numbers describe the electron that can be removed most easily from a Potassium atom in its ground state ?
 गः बात एल⿺ टकनीि ?
(A) $n=3, t=1, m=1, s=-\frac{1}{2}$
(1) $n=4, t=0, m=0, s=+\frac{1}{2}$
(C) $n=2, f=1, m=0, \cdots=\frac{1}{2}$
(D) $\mathrm{n}=4, \ell=1, \mathrm{~m}=1, \mathrm{~s}=+\frac{1}{2}$
42. What is added to a yellow chromate solution to convert it to an orange dichromate solution?
(A) dill. alkali
(C) any oxidising agent
(C) dill. acid
(D) any reducing agent

(A) नशू कात
(B) एय पालन घाइक प्रथा
(C) Fy आभिड
(D) एय काना रिजाबक प्षया
43. Which of the following species has highest magnetic moment ?

(A) $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$
(B) $\mathrm{Fer(CN})_{6}^{3-}$
(C) $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$
(D) $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$
44. Two gaseous elements belong to the same group in the periodic table. The relatively heavier clement has more negative value of electron gain enthalpy than the lighter one, though the later possesses higher electro-negativity than the former. Identify the two elements.
(A) F and Cl
(B) Cl and Br (C) O and S
(D) H and Cl

 ₹णाड़कणा खबत। लनार्ष भूजिति हिश्जि कद।
(A) FBCl
(B) $\mathrm{Cl} \otimes \mathrm{Br}$
(C) $0 \because S$
(D) HSCl
45. The Shape of CIF_{3} is :
(1) T shaped
(B) V shaped
(C) Z shaped
(D) Linear CIF_{3}-बत्र आदृडि ₹'न
(A) T -बद มखে
(B) V-ब्यद मए़।
(C) Z-जाब स्जा
(D) रदबिक

JENPAS(UG)-2021

46. The most acidic and least acific compounds among the following are respectively
47. ethanoic acid
48. ethanol
49. phenol
50. P -nitrophenol
(D) 4 and 3

51. श्चितिक कानित्ड
52. शषानन
53. एथ्नल
54. R -नाईटाएयन
302
(B) 201
(C) 132
(D) 403
55. The hydrocarbons of general formula $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}}$ represent
(A) only alkanes
(C) only alkynes
(B) only alkenes

(A) एक्नमात्य आनाल्म
(C) क्रिनमाद खानझांन
(B) कबननमाब खानकिन
(D) अ्यानकिन बदह माइखाखानाक्न डउसाइ
56. The number of σ and π bonds present in
pent -4 -ene $-1-$ yne($\left.\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{CH}\right)$ are respectively

(A) 3,10
(P) 10,3
(C) 9,3
(D) 10,2
57. Which of the following has the lowest boiling point ?
(H) 2,2-dimethylpropane
(B) 2-methylbutane
(C) cyclopentane

(D) n-pentane
(A) 2,2-जाइमिधाईनध्ञाएেन
(B) 2-मिधाইनকিটটেन
(C) भाइलालেढ্টেन
(D) घ-पिल्ठन
58. Among the following compounds the weakest base is
(A) aniline
(B) methylamine
(C) dimethylamine
(D) trimethylamine
निद्यनिजिड एयौगणनिद्ध मप्या भूर्षनज्य काद इन
(त) बानिनिन
(B) मिषाइनखायिन
(C) आइमिपाईनखायिन
(D) ढ़ईमिबाइनखायिन
