

(He	FINAL JEE-MAIN EXAN eld On Tuesday 27 th July, 2021)	/IN/	INATION – JULY, 2021 TIME : 9 : 00 AM to 12 : 00 NOON	
	MATHEMATICS		TEST PAPER WITH ANSWER	
	SECTION-A	6.	If the area of the bounded region	
1.	If the mean and variance of the following data: 6, 10, 7, 13, a, 12, b, 12		$R = \left\{ (x, y) : \max\{0, \log_{e} x\} \le y \le 2^{x}, \frac{1}{2} \le x \le 2 \right\}$	
	are 9 and $\frac{37}{4}$ respectively, then $(a - b)^2$ is equal to:		is, $\alpha(\log_e 2)^{-1} + \beta(\log_e 2) + \gamma$, then the value of	
	(1) 24 (2) 12 (3) 32 (4) 16 Official Ans. by NTA (4)		$(\alpha + \beta - 2\gamma)^2$ is equal to : (1) 8 (2) 2 (3) 4 (4) 1 Official Aps. by NTA (2)	
2.	The value of $\lim_{n\to\infty} \frac{1}{n} \sum_{j=1}^{n} \frac{(2j-1)+8n}{(2j-1)+4n}$ is equal to :	7.	A ray of light through (2,1) is reflected at a point D on the varia and then passes through the point	
	(1) $5 + \log_{e}\left(\frac{3}{2}\right)$ (2) $2 - \log_{e}\left(\frac{2}{3}\right)$		(5, 3). If this reflected ray is the directrix of ar	
	(3) $3 + 2\log_{e}\left(\frac{2}{3}\right)$ (4) $1 + 2\log_{e}\left(\frac{3}{2}\right)$		ellipse with eccentricity $\frac{1}{3}$ and the distance of the	
	Official Ans. by NTA (4)		nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the	
3.	Let $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + 2\hat{j} + 3\hat{k}$. Then the		equation of the other directrix can be:	
	vector product $(\vec{a} + \vec{b}) \times ((\vec{a} \times ((\vec{a} - \vec{b}) \times \vec{b})) \times \vec{b})$ is		(1) $11x + 7y + 8 = 0$ or $11x + 7y - 15 = 0$ (2) $11x - 7y - 8 = 0$ or $11x + 7y + 15 = 0$	
	equal to :		(3) $2x - 7y + 29 = 0$ or $2x - 7y - 7 = 0$	
	$(1) 5(34\hat{i} - 5\hat{i} + 3\hat{k}) \qquad (2) 7(34\hat{i} - 5\hat{i} + 3\hat{k})$		(4) $2x - 7y - 39 = 0$ or $2x - 7y - 7 = 0$	
	(1)S(311 Sj+Sk) = (2)7(311 Sj+Sk)		Official Ans. by NTA (3)	
	(3) $7(30\hat{i} - 5\hat{j} + 7\hat{k})$ (4) $5(30\hat{i} - 5\hat{j} + 7\hat{k})$ Official Ans. by NTA (2)	8.	If the coefficients of x^7 in $\left(x^2 + \frac{1}{bx}\right)^{11}$ and x^{-7} in	
4.	The value of the definite integral			
	$\frac{\pi}{4}$ dx		$\left(x - \frac{1}{bx^2}\right)$, $b \neq 0$, are equal, then the value of b	
	$\int_{\pi} \frac{1}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)}$		is equal to:	
	$-\frac{\dot{a}}{4}$		(1) 2 (2) -1 (3) 1 (4) -2	
	is equal to :		Official Ans. by NTA (3)	
	(1) $-\frac{\pi}{2}$ (2) $\frac{\pi}{2\sqrt{2}}$ (3) $-\frac{\pi}{4}$ (4) $\frac{\pi}{\sqrt{2}}$	9.	The compound statement $(P \lor Q) \land (\sim P) \Longrightarrow Q$ is equivalent to:	
	Official Ans. by NTA (2)		(1) $\mathbf{P} \lor \mathbf{Q}$ (2) $\mathbf{P} \land \sim \mathbf{Q}$	
5.	Let C be the set of all complex numbers. Let		$(3) \sim (P \Longrightarrow Q) \qquad (4) \sim (P \Longrightarrow Q) \Leftrightarrow P \land \sim Q$	
	$S_1 = \{z \in C \mid z - 3 - 2i ^2 = 8\},\$		Official Ans. by NTA (4)	
	$S_2 = \{ z \in C \mid Re(z) \ge 5 \} \text{ and}$ $S_3 = \{ z \in C \mid z - \overline{z} \ge 8 \}.$	10.	If $\sin\theta + \cos\theta = \frac{1}{2}$, then	
	Then the number of elements in $S_1 \cap S_2 \cap S_3$ is		$16(\sin(2\theta) + \cos(4\theta) + \sin(6\theta))$ is equal to:	
	equal to		(1) 23 (2) -27 (3) -23 (4) 27	
	(1) 1 (2) 0 (3) 2 (4) Infinite		Unicial Ans. by NTA (3)	
	Official Ans. by NTA (1)			

Final JEE-Main Exam July, 2021/27-07-2021/Morning Session

- **11.** Let $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$. If $A^{-1} = \alpha I + \beta A$, $\alpha, \beta \in \mathbf{R}$, I is a
 - 2×2 identity matrix, then $4(\alpha \beta)$ is equal to :

(1) 5 (2)
$$\frac{8}{3}$$
 (3) 2 (4) 4

Official Ans. by NTA (4)

12. Let $f:\left(-\frac{\pi}{4},\frac{\pi}{4}\right) \rightarrow \mathbf{R}$ be defined as $f(x) = \begin{cases} (1+|\sin x|)^{\frac{3a}{|\sin x|}} & , & -\frac{\pi}{4} < x < 0 \\ b & , & x = 0 \\ e^{\cot 4x/\cot 2x} & , & 0 < x < \frac{\pi}{4} \end{cases}$

If f is continuous at x = 0, then the value of $6a + b^2$ is equal to:

(1)
$$1 - e$$
 (2) $e - 1$ (3) $1 + e$ (4) e
Official Ans. by NTA (3)

13. Let y = y(x) be solution of the differential equation

$$\log_{e}\left(\frac{dy}{dx}\right) = 3x + 4y, \text{ with } y(0) = 0.$$

If $y\left(-\frac{2}{3}\log_{e} 2\right) = \alpha \log_{e} 2$, then the value of α is

equal to:

(1)
$$-\frac{1}{4}$$
 (2) $\frac{1}{4}$ (3) 2 (4) $-\frac{1}{2}$

Official Ans. by NTA (1)

14. Let the plane passing through the point (-1, 0, -2)and perpendicular to each of the planes 2x + y - z = 2and x - y - z = 3 be ax + by + cz + 8 = 0. Then the value of a + b + c is equal to:

- 15. Two tangents are drawn from the point P(-1, 1) to the circle $x^2 + y^2 - 2x - 6y + 6 = 0$. If these tangents touch the circle at points A and B, and if D is a point on the circle such that length of the segments AB and AD are equal, then the area of the triangle ABD is equal to:
 - (1) 2 (2) $(3\sqrt{2}+2)$
 - (3) 4 (4) $3(\sqrt{2}-1)$

- 16. Let $f : \mathbf{R} \to \mathbf{R}$ be a function such that f(2) = 4 and f'(2) = 1. Then, the value of $\lim_{x \to 2} \frac{x^2 f(2) - 4f(x)}{x - 2}$ is equal to : (1) 4 (2) 8 (3) 16 (4) 12 Official Ans. by NTA (4) 17. Let P and Q be two distinct points on a circle
 - Let P and Q be two distinct points on a circle which has center at C(2, 3) and which passes through origin O. If OC is perpendicular to both the line segments CP and CQ, then the set {P, Q} is equal to
 - $(1) \{(4,0),(0,6)\}$

(2)
$$\{(2+2\sqrt{2},3-\sqrt{5}),(2-2\sqrt{2},3+\sqrt{5})\}$$

(3)
$$\{(2+2\sqrt{2},3+\sqrt{5}),(2-2\sqrt{2},3-\sqrt{5})\}$$

 $(4) \{(-1,5),(5,1)\}$

Official Ans. by NTA (4)

18. Let α , β be two roots of the equation $x^{2} + (20)^{1/4}x + (5)^{1/2} = 0$. Then $\alpha^{8} + \beta^{8}$ is equal to (1) 10 (2) 100 (3) 50 (4) 160 **Official Ans. by NTA (3)**

19. The probability that a randomly selected 2-digit number belongs to the set{n ∈ N : (2ⁿ - 2) is a multiple of 3} is equal to

(1)
$$\frac{1}{6}$$
 (2) $\frac{2}{3}$ (3) $\frac{1}{2}$ (4) $\frac{1}{3}$

Official Ans. by NTA (3)

20. Let

A = {(x, y)
$$\in \mathbf{R} \times \mathbf{R} | 2x^2 + 2y^2 - 2x - 2y = 1$$
},
B = {(x, y) $\in \mathbf{R} \times \mathbf{R} | 4x^2 + 4y^2 - 16y + 7 = 0$ } and
C = {(x, y) $\in \mathbf{R} \times \mathbf{R} | x^2 + y^2 - 4x - 2y + 5 \le r^2$ }.

Then the minimum value of $|\mathbf{r}|$ such that $A \cup B \subseteq C$ is equal to

(1)
$$\frac{3+\sqrt{10}}{2}$$
 (2) $\frac{2+\sqrt{10}}{2}$
(3) $\frac{3+2\sqrt{5}}{2}$ (4) $1+\sqrt{5}$

Official Ans. by NTA (3)

Final JEE-Main Exam July, 2021/27-07-2021/Morning Session

ALLER ALLER CAREER INSTITUTE

SECTION-B

1. For real numbers α and β , consider the following system of linear equations :

 $x + y - z = 2, x + 2y + \alpha z = 1, 2x - y + z = \beta.$

If the system has infinite solutions, then $\alpha + \beta$ is equal to _____

Official Ans. by NTA (5)

2. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, \vec{b} and $\vec{c} = \hat{j} - \hat{k}$ be three vectors such that $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} = 1$. If the length of projection vector of the vector \vec{b} on the vector $\vec{a} \times \vec{c}$ is *l*, then the value of $3l^2$ is equal to _____.

Official Ans. by NTA (2)

3. If $\log_3 2$, $\log_3(2^x - 5)$, $\log_3\left(2^x - \frac{7}{2}\right)$ are in an

arithmetic progression, then the value of x is equal to _____.

Official Ans. by NTA (3)

4. Let the domain of the function

$$f(x) = \log_4 \left(\log_5 \left(\log_3 \left(18x - x^2 - 77 \right) \right) \right)$$
 be (a, b).

Then the value of the integral

 $\int_{a}^{b} \frac{\sin^3 x}{(\sin^3 x + \sin^3(a + b - x))} dx$ is equal to _____

Official Ans. by NTA (1)

5. Let

 $f(x) = \begin{vmatrix} \sin^2 x & -2 + \cos^2 x & \cos 2x \\ 2 + \sin^2 x & \cos^2 x & \cos 2x \\ \sin^2 x & \cos^2 x & 1 + \cos 2x \end{vmatrix}, x \in [0, \pi]$

Then the maximum value of f(x) is equal to

Official Ans. by NTA (6)

6. Let $F : [3, 5] \rightarrow \mathbf{R}$ be a twice differentiable function on (3, 5) such that

$$F(x) = e^{-x} \int_{3}^{x} (3t^{2} + 2t + 4F'(t)) dt.$$

If $F'(4) = \frac{\alpha e^{\beta} - 224}{(e^{\beta} - 4)^{2}}$, then $\alpha + \beta$ is equal to

Let a plane P pass through the point (3, 7, -7) and contain the line, $\frac{x-2}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$. If distance of the plane P from the origin is d, then d² is equal to _____.

Official Ans. by NTA (3)

7.

8. Let $S = \{1, 2, 3, 4, 5, 6, 7\}$. Then the number of possible functions $f: S \rightarrow S$ such that $f(m \cdot n) = f(m) \cdot f(n)$ for every $m, n \in S$ and $m \cdot n \in S$ is equal to____.

Official Ans. by NTA (490)

9. If y = y(x), $y \in \left[0, \frac{\pi}{2}\right]$ is the solution of the

differential equation

$$\sec y \frac{dy}{dx} - \sin(x+y) - \sin(x-y) = 0, \text{ with } y(0) = 0,$$

then
$$5y'\left(\frac{\pi}{2}\right)$$
 is equal to _____.

Official Ans. by NTA (2)

10. Let $f : [0, 3] \rightarrow \mathbf{R}$ be defined by

 $f(x) = \min \{x - [x], 1 + [x] - x\}$

where [x] is the greatest integer less than or equal to x. Let P denote the set containing all $x \in [0, 3]$ where f is discontinuous, and Q denote the set containing all $x \in (0, 3)$ where f is not differentiable. Then the sum of number of elements in P and Q is equal to

Official Ans. by NTA (5)

Official Ans. by NTA (16)